Newtown Stream and Wetland Restoration Project Union County, North Carolina EEP Project #94150 Contract No. 002025

MY-03 Monitoring Report-Final

Data Collected: September 2013 Submitted: November 2013

Prepared for: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program 217 West Jones St, Suite 3000A Raleigh, NC 27603

Submitted by:

Environmental Banc & Exchange 909 Capability Drive, Suite 3100 Raleigh, NC 27606

Phone Number:	(919) 829-9909
Fax Number:	(919) 829-9913
Project Manager:	Norton Webster, PWS

Prepared by:

Ward Consulting Engineers, P.C. NCBELS Firm #C-2619 4805 Green Road, Suite 100 Raleigh, NC 27616

Phone Number:(919) 870-0526Fax Number:(919) 870-5359Project Manager:Becky Ward, PE

TABLE OF CONTENTS

I.	Executive Summary	2
II.	Methodology	6
III.	References	6
	APPENDICES	
App	endix A. Project Vicinity Map and Background Tables	7
	Figure 1. Vicinity Map	8
	Table 1a. Project Components	9
	Table 1b. Component Summations	9
	Table 2. Project Activity and Reporting History	10
	Table 3. Project Contacts Table	11
	Table 4. Project Attribute Table	12
App	endix B. Visual Assessment Data	13
	Figure 2. Consolidated Current Conditions Plan View	14
	Table 5. Visual Stream Morphology Assessment Table	
	Table 6. Vegetation Condition Assessment Table	25
	Photos 1-15. Cross Section Photos	27
	Photos 16-28. Vegetation Plot Photos	35
App	endix C. Vegetation Plot Data	39
	Table 7. Vegetation Plot Criteria Attainment	40
	Table 8. CVS Vegetation Plot Metadata	41
	Table 9. CVS Planted and Total Stem Counts	42
App	endix D. Stream Survey Data	43
	Cross Section Figures	44
	Longitudinal Profile	59
	Pebble Count Plots	61
	Table 10a. Baseline Stream Data Summary	71
	Table 10b. Baseline Stream Data Summary	72
	Table 11a. Dimensional Morphology Summary	75
	Table 11b. Stream Reach Data Summary	77
App	endix E. Hydrologic Data	79
	Table 12. Verification of Bankfull Events	
	Table 13. Wetland Criteria Attainment	81
	Groundwater Gauge Charts	82

I. Executive Summary

The Newtown Stream and Wetland Restoration Site is located within the sub-basin 03-08-38 of the Catawba River Basin in Union County, North Carolina and contains Underwood Creek and one Unnamed Tributary (UT) to Underwood Creek. The restoration lengths of Underwood Creek (Main Channel) and UT to Underwood Creek (Tributary) are 1,273 and 4,075 feet, respectively, for a total project length of 5,348 feet (Figure 1). The project included restoration of 3.38 acres of riparian wetland and protection of an existing 0.15 acres of jurisdictional wetlands. The project site is owned by one property owner Mr. Frank W. Howey, Jr. The project is located within the HUC 03050103030020 (Lower Catawba Basin) of the South Atlantic-Gulf Region. NCDWQ classifies Underwood Creek (DWQ Stream Index Number 11-138-2-3-1) as class C. The 1.5 square mile watershed contributing drainage to the stream restoration segment is located in a rural setting. The land adjacent to the project streams is primarily used for agricultural practices and single family development. The floodplain is more confined in the upper reach of the project and opens up to a broad width for the majority of the project length. Vegetation typical of a Piedmont Alluvial Forest was planted throughout the conservation easement.

Project Goals:

- Improve water quality with the construction of stable stream banks and the establishment of a vegetated buffer
- Improve the stream function and habitat with the connection of the channelized and incised stream back to its floodplain
- ° Improve wetland hydrology with the functional uplift of the proposed channel
- Restore long-term stability with the restoration of channel pattern, profile and dimension
- [°] Improve in-stream habitat with the installation of brush toes, root wads, constructed riffles, log vanes and rock cross vanes to enhance pool depths

Project Objectives:

- ^o The restoration of 4,690 linear feet of Priority I, 558 feet of Priority II and 100 feet of Enhancement II in order to raise the stream bed elevation, reconnect the stream to its floodplain, restore pattern, and re-establish channel dimension on Underwood Creek and UT to Underwood Creek
- Restoration of 3.38 acres of wetlands through the functional uplift of the stream to improve wetland hydrology and the removal of depositional sediment from the wetland surface due to agricultural field soil wash
- Establish a minimum of 50 feet of riparian buffer along both sides of the entire stream length

Thirteen (13) vegetation plots were monitored using Level II of the CVS-EEP vegetation monitoring protocol (Version 4.2) which accounts for planted and natural stems. Counting only planted stems and excluding livestakes, there are 407 stems/acre. Counting both natural and planted stems, excluding live stakes, there are 859 stems/acre.

Ward Consulting Engineers, P.C.

2

The success criterion for planted woody species is 320 stems/acre after MY-03. A mortality rate of ten percent will be allowed after MY-04 (288 stems/acre), with another ten percent allowed after MY-05 (260 stems/acre). While all the vegetation plots combined meet the criteria for total planted stems, planted stem counts for plots 4, 6, 7, 8, and 11 were below the threshold requirements of 320 stems (Table 7). Plots 4, 7, and 8 exceeded the stem density requirements when including natural stems. Volunteers observed within the plot 4 and 7 were eastern cottonwood (*Populus deltoides*) trees. The eastern cottonwood is very abundant throughout the vicinity of the stream confluence and is sporadically abundant throughout the stream buffer corridor as in the vicinity of plot 7. Volunteers observed within plot 8 include eastern silverling (Baccharus halimifolia) and common elderberry (Sambucus canadensis). Other volunteer species observed within the conservation easement were black willow (Salix nigra), eastern sugarberry (Celtis laevigata), winged sumac (Rhus copallinum), and slippery elm (Ulmus rubra). Volunteer species densities are low within plots 6 and 11. Wetland hydrology is present and the herbaceous layer is dominant within the vicinity of Plot 6. Some planting may have been smothered by the herbaceous layer resulting in the low stem density. Planted species surviving within Plot 6 are river birch (Betula nigra), button bush (Cephalanthus occidentalis), green ash (Fraxinus pennsylvanica), and swamp chestnut oak (Quercus *michauxii*). Plot 11 is located within an area where the herbaceous layer is relatively sparse and wetland hydrology is absent. Planted species surviving are persimmon (Diospyros virginiana), green ash, swamp chestnut oak, and willow oak. The vegetation problem areas consist of areas with low stem densities and invasive exotic vegetation. Low stem densities were observed in the vicinity of plots 6 and 11 and in areas of the floodplain bench where herbaceous vegetation diversity was low and sparse. Some of these areas corresponds to areas where excavation of the new stream floodplain occurred. Soil compactness and nutrient deficiency may be a factor in the survival rate of woody stems in these particular areas of low stem densities. Five species of invasive exotics were observed in the conservation easement include Tree-of-heaven (Ailanthus altissima), Japanese stiltgrass (Microstegium vimineum), Chinese privet (Ligustrum sinense), Johnson grass (Sorghum halapense), and Asian dayflower (Murdania keisak). Chinese privet and Johnson grass stands within the conservation easement were treated with a foliar herbicidal spray during the MY-03 period resulting in individual stems of Chinese privet exhibiting defoliation with little new growth. Johnson grass was dying in most of the areas treated. Some areas of Johnson grass along the conservation easement limits still persist. Some living individual stems of Chinese privet were observed in and around the wetland reference site and along the margins of the adjacent woodlands beyond the conservation easement limits. The tree-of-heaven stands previously noted observed along the conservation easement boundary just northeast of plot 8 were dead with some re-sprouts in the immediate vicinity. Although these invasive exotic species are given different ranks of severity, the functionality of the project is not expected to be impaired significantly. These species will continue to be observed and treated as necessary.

3

	MY-03Vegetation Problem Areas					
VPA #	Station Number	Suspected Cause	Proposed Remedial Action			
1	See CCPV	Chinese privet is scattered in forested areas that were present during pre-construction.	Chinese privet has been treated throughout the CE. Persistence will be monitored and treated again if deemed necessary.			
2	See CCPV	Johnson grass is scattered in small patches and along the conservation easement boundary. The CCPV depicts areas where it is concentrated.	Johnson grass has been treated throughout the CE. Persistence will be monitored and treated again if deemed necessary.			
3	See CCPV	Japanese stiltgrass is concentrated in an area adjacent to woodlands where it escaped.	Japanese stiltgrass persistence will be monitored and treated if deemed necessary.			
5	See CCPV	Low stem densities were observed in patches throughout the conservation easement in areas where planted and natural stem densities were low.	Areas of low stem densities will be replanted in 2014			

Eight Remote Data Systems (RDS) groundwater monitoring gauges are located throughout the riparian wetlands within the conservation easement. There are a total of 3.38 acres of riparian wetland restoration and 0.15 acres of wetland preservation. According to the wetland groundwater gauges on site for MY-03, Gauges 1 through 8 met wetland hydrology criteria (Table 13). During the MY-04 period an additional three ground water monitoring gauges will be installed in select wetland restoration areas near the conservation easement boundary.

The monitoring reach of Underwood Creek is stable with little change to the stream pattern and profile. There was a much larger presence of water in the channel during MY-03 compared to MY-02. The months of June and July in 2013 had higher than normal rainfall. The cross sections for MY-03 compare well to the MY-02 cross section data. Pebble counts in the riffle cross sections show coursing of particle size. Some riffles surveyed in the longitudinal profile continue to adjust however no instability of the steam profile has occurred. The rills noted in the Current Condition Plan View (CCPV) occurred shortly after construction. They are currently not showing any further degradation and vegetation has begun to grow in this area. Beaver activity is present from the confluence of the tributary approximately 200 feet upstream. A beaver dam at station 18+20 was knocked down by monitoring personnel. The dams are causing back water and the submergence of the step grade control structures near the confluence. Beaver trapping is scheduled to occur before November 28, 2013.

The monitoring reach of UT to Underwood Creek also displays little change to pattern, profile or dimension. Along this 3,000 linear monitoring reach, 97 percent of the riffles are holding grade, a 2% increase from MY-02. Flowing water was not evident in the upper portion of the reach however water was present in some of the pools from station 9+50 to 11+25. The reach has been dryer during our surveys over the past two years

Ward Consulting Engineers, P.C.

4

which may be due to the data collection timing. The watershed will be investigated to determine if there has been an upstream impact that may be impacting the project site. No significant changes in the stream location or elevation was preformed with the restoration from station 1+00 through 8+00 that would have affected the stream hydrology. The channel from station 8+00 through 12+00 was relocated and elevated through a series of step structures. The soils will be evaluated in the relic channel location through this area in MY-04 to evaluate the post project soil hydrology. Flow will be documented in the channel next year at various times. EBX will install a minimum of two continuous flow devices prior to the start of the MY-04 growing season. There is no vegetation growing in the channel through the wooded enhancement area. Once the stream exits the wooded area and the tree canopy reduces the stream bank herbaceous vegetation is very dense. The vegetation has fallen into the channel forming mats in the channel bottom in areas. The vegetation is rooted to the bank and is easily pulled back out of the stream to the confluence.

A comparison of the cross section data shows little change in geometry between MY-02 and MY-03 for all sections but section 4. Cross section 4, a pool, has narrowed. The signification amount of vegetation present at the time of monitoring may have affected the data collected. The tree adjacent to cross section 1 has fallen and the root ball is partially exposed. This tree was mentioned in MY-02 as it was leaning on an adjacent tree. The root ball is in the floodplain and therefore is not compromising the channel banks at this time. The photo below shows the root ball of the fallen tree. Bank erosion was observed in two locations as noted in the MY-02 report. Four riffles showed signs of additional degradation in this monitoring year. The locations are noted on the CCPV. The overall longitudinal profile of the stream is stable. Beaver dams were present at three locations in the area from the confluence with Underwood Creek to a distance approximately 200 feet upstream. The beaver dams were broken down by monitoring personnel. The beaver dams are causing water to pond upstream of the channel.

	MY-03 Stream Problem Areas				
PA	Station	Suspected Cause	Proposed Remedial Action		
1	See CCPV	Bank erosion	Observe in MY-04 to see if stabilizes		
2	See CCPV	Point Bar Riling within the floodplain-occurred after construction	Not degrading further some vegetation has come into the area		
3	See CCPV	Degradation of some riffles from the previous monitoring year	Observe in MY-04 not causing any stream instability		
4	At confluence of streams – area of influence extends approximately 200 feet upstream both streams	Beaver activity – construction of beaver dams	Beaver removal		

Summary information/data related to the occurrence of items such as beaver or encroachment, and statistics related to performance of various project and monitoring elements, can be found in the tables and figures in the report appendices. Narrative background and supporting information formally found in these reports can be found in the mitigation and restoration plan documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

II. Methodology

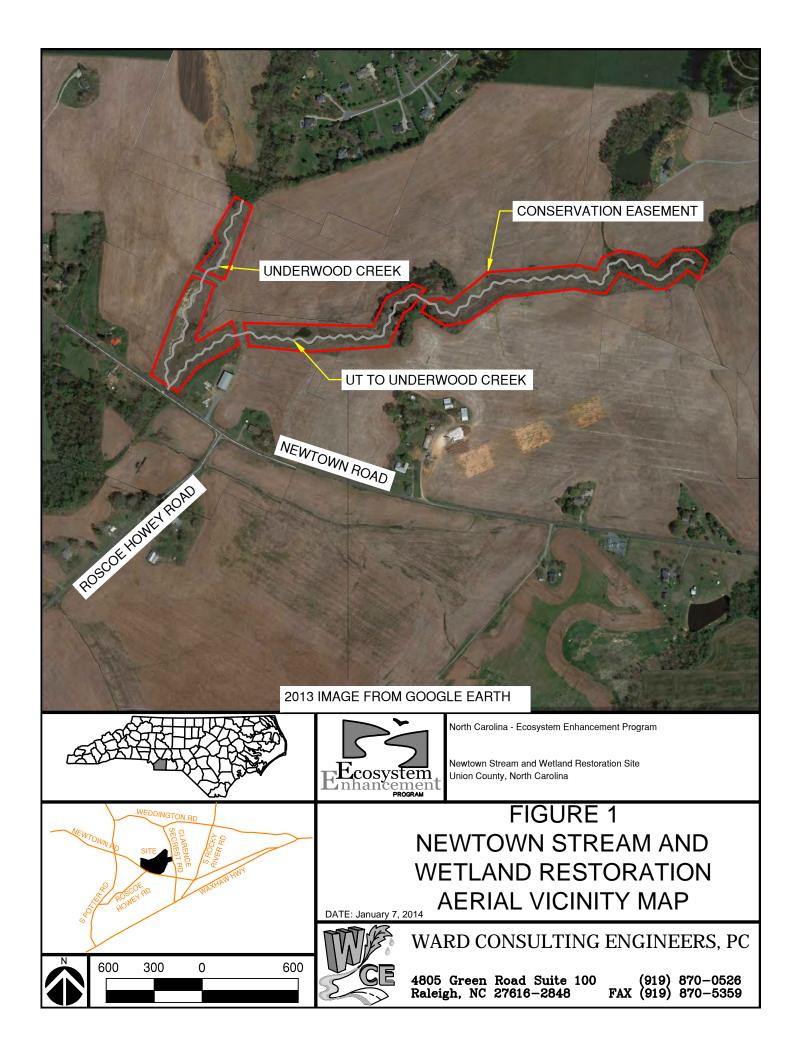
Methodologies follow EEP monitoring report template Version 1.3 (01/15/10) and CVS vegetation monitoring protocol Version 4.2 (Lee et al 2008). Photos were taken with a digital camera. A Trimble Geo XT handheld unit with sub-meter accuracy was used to collect groundwater gauge locations, vegetation monitoring plot origins, and problem area locations. Cross sectional and longitudinal surveys were conducted using total station survey equipment. Data was entered into AutoCAD Civil3D to obtain dimensions of the cross sections and parameters applicable to the longitudinal profile. Reports were then generated to display summaries of the stream survey.

A. Vegetation Methodologies

Level II of the EEP/CVS protocol (Version 4.2) was used to collect data for MY-03. Data collected for these plots are in Appendix C.

B. Wetland Methodologies

Seven RDS groundwater monitoring gauges (1-3; 5-8) were installed in April of 2011. Gauge 4, the wetland reference gauge, was installed in February 2010. Gauges are downloaded bi- monthly to ensure proper function throughout the growing season. Data is provided in an Excel spreadsheet along with incorporation of local rainfall data provided by the NC State Climate Office.


C. Stream Methodologies

Stream profile and cross-sections were surveyed using total station equipment and methods, and plotted using AutoCAD Civil3D. The longitudinal profile was generated using the MY-00 alignment. Cross sectional data was extracted based on a linear alignment between the end pins. Cross section bankfull elevations for yearly comparisons are based on the baseline bankfull elevation established for each cross section.

III. References

- Lee, Michael T. Peet, Robert K. Roberts, Steven D., Wentworth, Thomas R. (2008). *CVS-EEP Protocol for Recording Vegetation Version 4.2.*
- Weakley, Alan (2007). Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas. http://www.herbarium.unc.edu/flora.htm.
- Wolman, M.G., 1954. A Method of Sampling Coarse River-Bed Material, Transactions of American Geophysical Union 35:951-956.

Appendix A. Project Vicinity Map and Background Tables

	Table 1. Project Components Newtown Stream and Wetland Restoration								
Project Component or Reach ID	Existing Feet/Acres	Restoration Level	Approach	Footage or Acreage	Stationing	Mitigation Ratio	Mitigation Units	BMP Elements1	Comment
Underwood Creek	520	R	P2	558	5+00 - 10+58	1:1	558		
Underwood Creek	625	R	P1	715	11+16 - 19+06	1:1	715		58 LF easement exclusion for Stream Crossing
UT to Underwood Creek	3923	R	P1	3975	2+00 - 43+07	1:1	3975		125 LF easement exclusion for two (2) Stream Crossings
UT to Underwood Creek	100	E2		100	1+00 - 2+00	2.5:1	40		
Wetland	3.38	R	-	3.38		1:1	3.38		
Wetland	0.15	Р	-	0.15		1:1	0.15		Preservation

1 = BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; Grassed Swale = S; LS = Level Spreader; NI = Natural Infiltration Area, O = Other; CF = Cattle Fencing; WS = Watering System; CH = Livestock Housing

Table 1b. Component Summations Newtown - EEP# 94150							
Restoration Level	Stream (lf)		arian nd (Ac)	Non- Ripar (Ac)	Upland (Ac)	Buffer (Ac)	BMP
		Riverine	Non- Riverine				
Restoration	5248	3.38					
Enhancement							
Enhancement I		_					
Enhancement II	100						
Creation			_				
Preservation		0.15					
HQ Preservation			•				
Totals (Feet/Acres)	5348	3.	53				
MU Totals	5288	3.	53				
Non-Applicable							

	Data Collection	Completion or
Activity or Deliverable	Complete	Delivery
Restoration Plan	June 2010	June 2010
Final Design – Construction Plans	July 2010	July 2010
Construction	-	April 2011
Bare root and livestake planting	-	April 2011
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	April 2011	May 2011
Year 1 Monitoring	October 2011	December 2011
Year 2 Monitoring	November 2012	November 2012
Year 3 Monitoring	September 2013	November 2013
Year 4 Monitoring		
Year 5 Monitoring		

Table 2. Project Activity and Reporting History

Newtown Stream and Wetland Restoration

Bolded items are examples of those items that are not standard, but may come up and should be included. Non-bolded items represent events that are standard components over the course of a typical project.

	Table 3. Project Contacts Table			
Newtown Stream and Wetland Restoration				
Designer	Ward Consulting Engineers, P.C.			
	4805 Green Road, Suite 100			
	Raleigh, NC 27616			
Primary project design POC	Becky Ward 919-870-0526			
Construction Contractor	RFG Construction			
	1907 Cambridge Dr			
	Kinston, NC 28504			
Construction contractor POC	Robert Grady 252-559-6954			
Survey Contractor	R.B. Pharr & Associates			
	420 Hawthorne Ln			
	Charlotte, NC 28204			
Survey contractor POC	Justin Cloninger 704-376-2186			
Planting Contractor	New Forest Services			
	P.O. Box 255			
	Manistee, MI 49660			
Planting contractor POC	Brian Jarvinen 910-512-6754			
Seeding Contractor	RFG Construction			
	1907 Cambridge Dr			
	Kinston, NC 28504			
Contractor point of contact	Robert Grady 252-559-6954			
Seed Mix Sources	Evergreen Seed - Fuquay Varina, NC			
	919-567-1333			
Nursery Stock Suppliers	Arbor Gen - Blenheim, SC - South Carolina			
	SuperTree Nursery			
	800-222-1290			
Monitoring Performers	Ward Consulting Engineers, P.C.			
	4805 Green Road, Suite 100			
	Raleigh, NC 27616			
Stream Monitoring POC	Becky Ward 919-870-0526			
Vegetation Monitoring POC	Chris Sheats - The Catena Group - 919-732-1300			
Wetland Monitoring POC	Chris Sheats - The Catena Group - 919-732-1300			

	ect Attribute Table and Wetland Restorat	tion			
Project County		Union			
Physiographic Region	Piedmont				
	Carolina Slate Belt				
Ecoregion Project River Basin		awba River Basin			
•					
USGS HUC for Project (14 digit)	30	050103030020			
NCDWQ Sub-basin for Project		03-08-38			
Within extent of EEP Watershed Plan?		No			
WRC Hab Class (Warm, Cool, Cold)		-			
% of project easement fenced or demarcated		100%			
Beaver activity observed during design phase?		No			
Restoration Com	ponent Attribute Tab				
	Underwood Creek	UT to Underwood Creek			
Drainage area	0.72 sq mi	0.74 sq mi			
Stream order	-	-			
Restored length (feet)	1273	3975			
Perennial or Intermittent	Perennial	Perennial			
Watershed type (Rural, Urban, Developing etc.)	Rural	Rural			
Watershed LULC Distribution (e.g.)					
Residential		14%			
Ag-Row Crop		66%			
Ag-Livestock		-			
Forested	20%				
Etc.		-			
Watershed impervious cover (%)		-			
NCDWQ AU/Index number	11-138-2-3-1	N/A			
NCDWQ classification	С	N/A			
303d listed?	N	N			
Upstream of a 303d listed segment?	N	N			
Reasons for 303d listing or stressor	N/A	N/A			
Total acreage of easement		16.43 Ac			
Total vegetated acreage within the easement	0.17 Ac	0.53 Ac			
Total planted acreage as part of the restoration		14.3 Ac			
Rosgen classification of pre-existing	incised C4/E4	incised C4/E4 w/sections of G4			
Rosgen classification of As-built	C4	C4			
Valley type		<u> </u>			
Valley slope	0.64%	0.63%			
Valley side slope range (e.g. 2-3.%)	-	-			
Valley toe slope range (e.g. 2-3.%)		-			
Cowardin classification	-	_			
Trout waters designation	- N	- N			
	N	N			
Species of concern, endangered etc.? (Y/N) Dominant soil series and characteristics	iN	IN			
	Chowcolo	Chawaala			
Series	Chewacla	Chewacla			
Depth	-				
Clay%	-	-			
K	-	-			
T Use N/A for items that may not apply. Use "-" for ite	-	-			

Use N/A for items that may not apply. Use "-" for items that are unavailable and "U" for items that are unknown

Appendix B. Visual Assessment Data

	Y Ch				
Vegetation Plot Origins					
Plot Name	Northing	Easting			
VP 1	448672.01	1507128.22			
VP 2	448460.02	1506909.61			
VP 3	448157.84	1506800.79			
VP 4	447966.78	1506832.95			
VP 5	448153.74	1507081.53			
VP 6	448228.13	1507543.37			
VP 7	448179.64	1507841.68			
VP 8	448266.41	1508086.78			
VP 9	448359.76	1508550.13			
VP 10	448446.72	1508742.00			
VP 11	448583.68	1508973.48			
VP 12	448521.15	1509214.17			
VP 13	448603.80	1509481.71			
1.2.25	and the states of	AL CARRY			

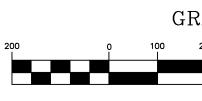
FIGURE .

UNDERWOOD CREEK

FIGURE 2F

STA 5+00

A 10+5


I RESTORATIO

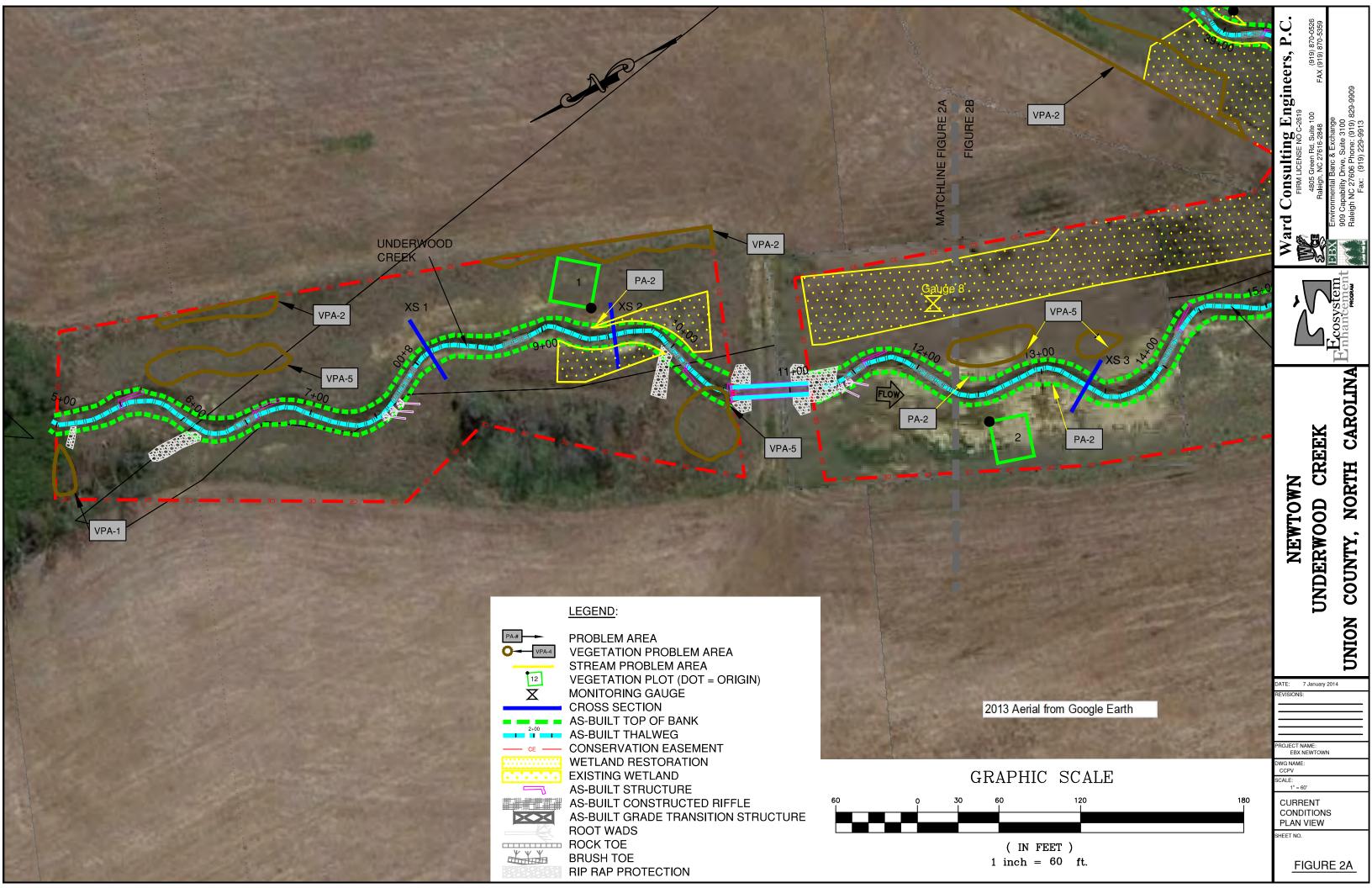
11+16

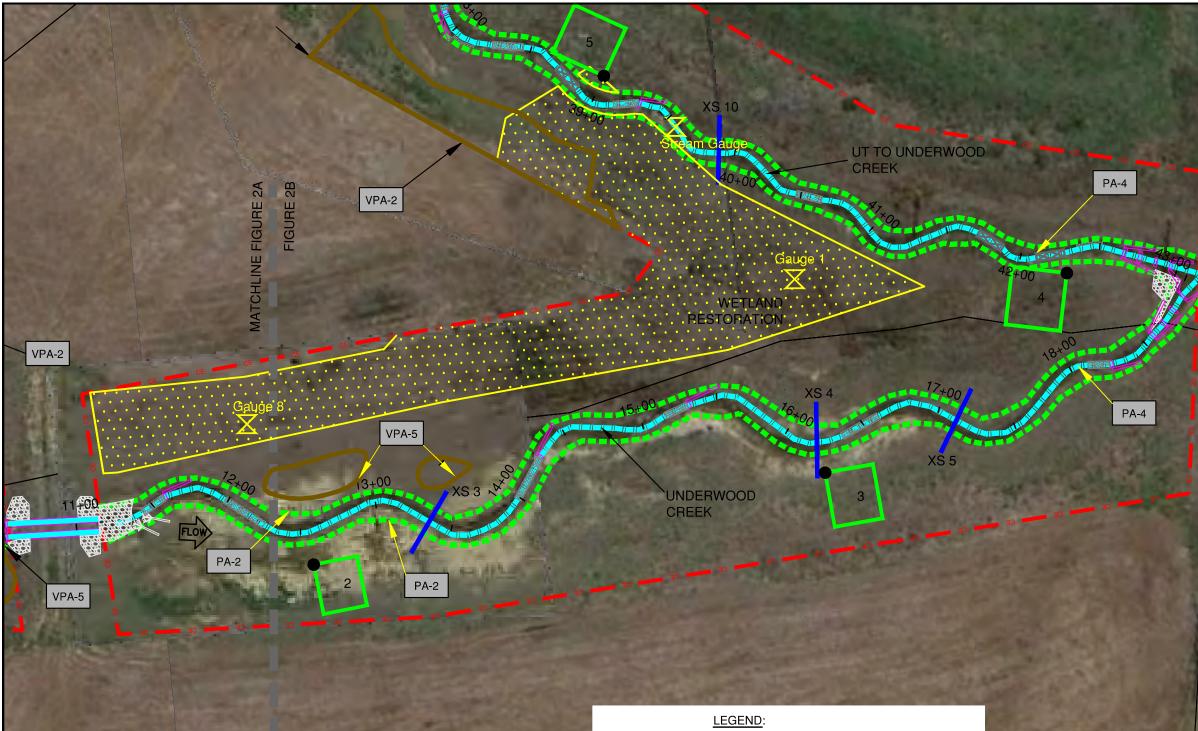
PREAM PRIORITY II RESTORATION

FIGURE 2A

RE 20 Gauge 5	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	×51	STREAM EN	HANCEMEN	00+1-1416 0-1-1416	Ward Consulting Engineers, P.C. FIRM LICENSE NO C-2619 FIRM LICENSE NO C-2619 Raleigh, NC 27616-2848 Environmental Banc & Exchange OSystem Osystem Sime Environmental Banc & Exchange OSystem Sime Environmental Banc & Exchange OSYStem Fax: (919) 829-9903 Fax: (919) 229-9913
XS 1 XS 2 XS 3 XS 4	Left Northing 448791.94 448657.90 448366.02 448140.89	ections Underv Pin Easting 1507187.43 1507124.68 1506907.39 1506841.37	Righ Northing 448790.30 448677.45 448404.06 448163.68	tt Pin Easting 1507136.44 1507078.39 1506885.52 1506800.24	EK	EP# 94150 CURRENT PLAN VIEW ORTH CAROLINA
XS 5 XS 1 XS 2 XS 3 XS 4 XS 5 XS 6		1506800.42 ons UT to Uno Easting 1509726.46 1509448.30 1509071.04 1508911.29 1508633.33 1508171.97		1506775.75 k t Pin Easting 1509702.58 1509463.20 1509099.72 1508914.82 1508619.55 1508136.96		NEWTOWN E OVERALL CONDITIONS UNION COUNTY, N
XS 7 XS 8 XS 9 XS 10	448182.29 448177.18 448179.84 448103.36	1508003.67 1507786.94 1507395.62 1507024.96 IC SCAI	448221.68 448232.42 448237.37 448125.71	1507995.64 1507767.15 1507413.75 1506988.19	F	DATE: 7 January 2014 REVISIONS: PROJECT NAME: EBX NEWTOWN DWG NAME: CCPV SCALE: 1" = 200 CURRENT CONDITIONS PLAN VIEW

FIGL

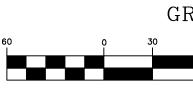

2013 Aerial from Google Earth

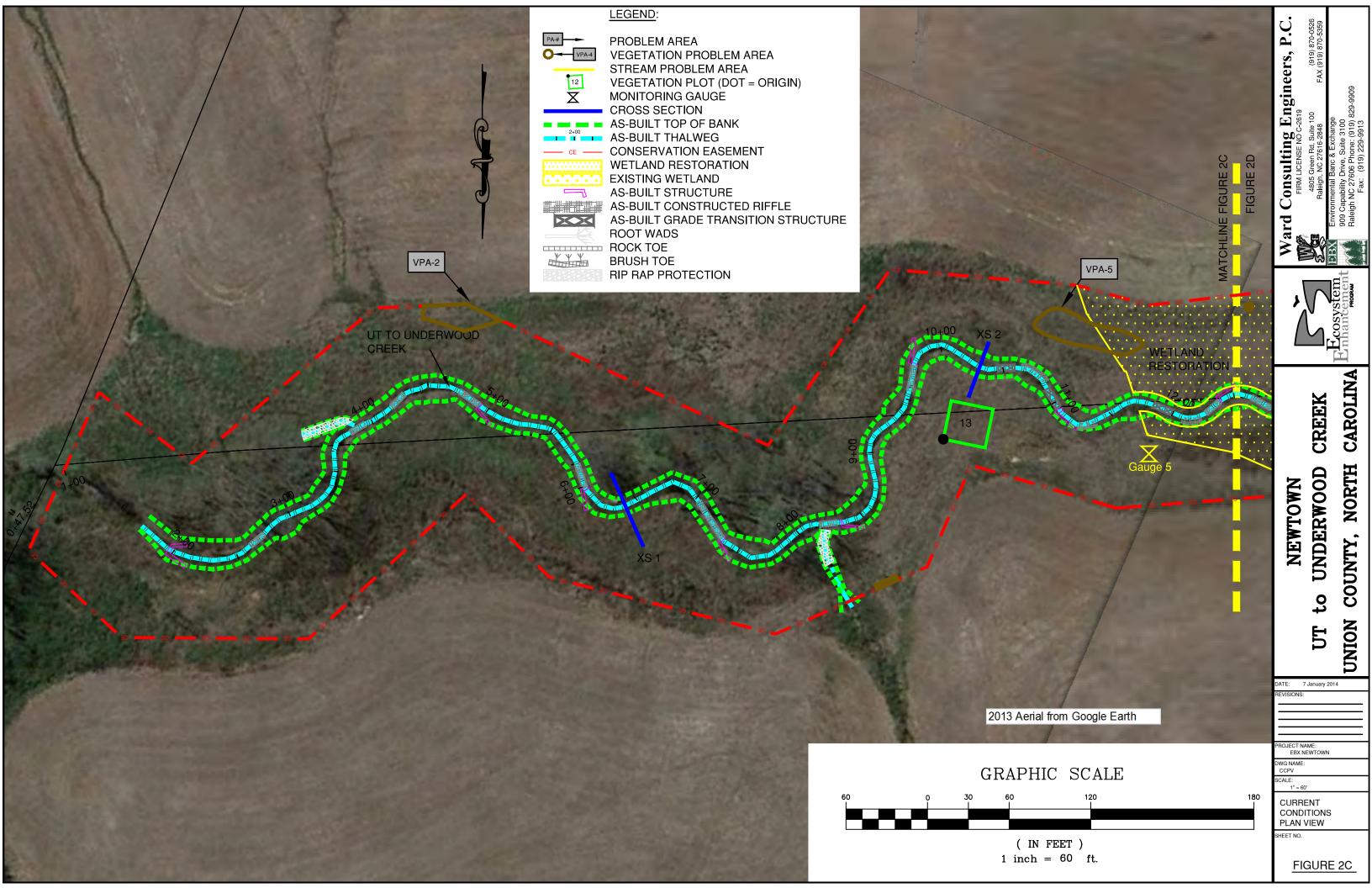

ND CREEK MONITORING REACH-

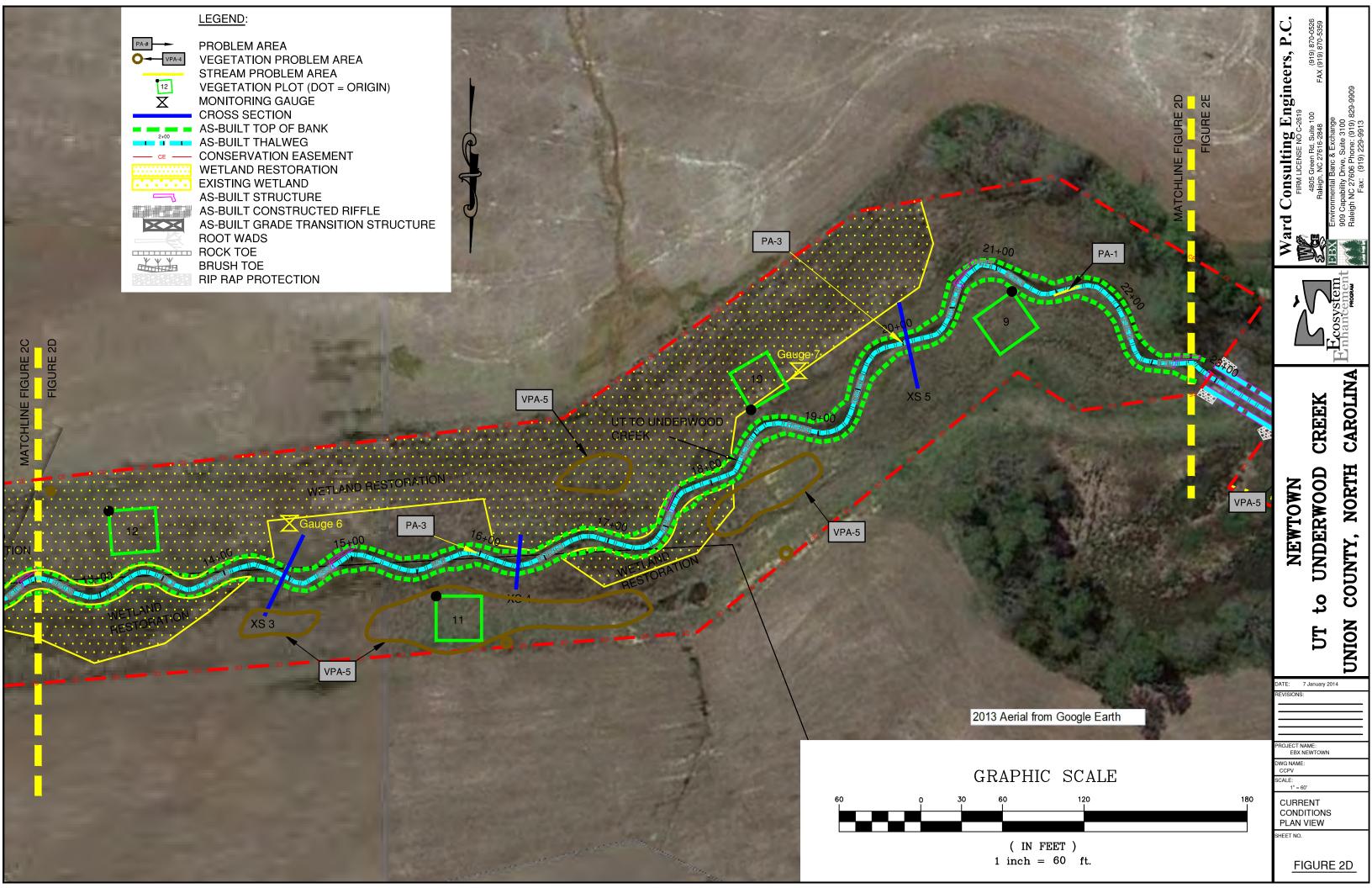
-streAM PRIORITY I RESTORATION

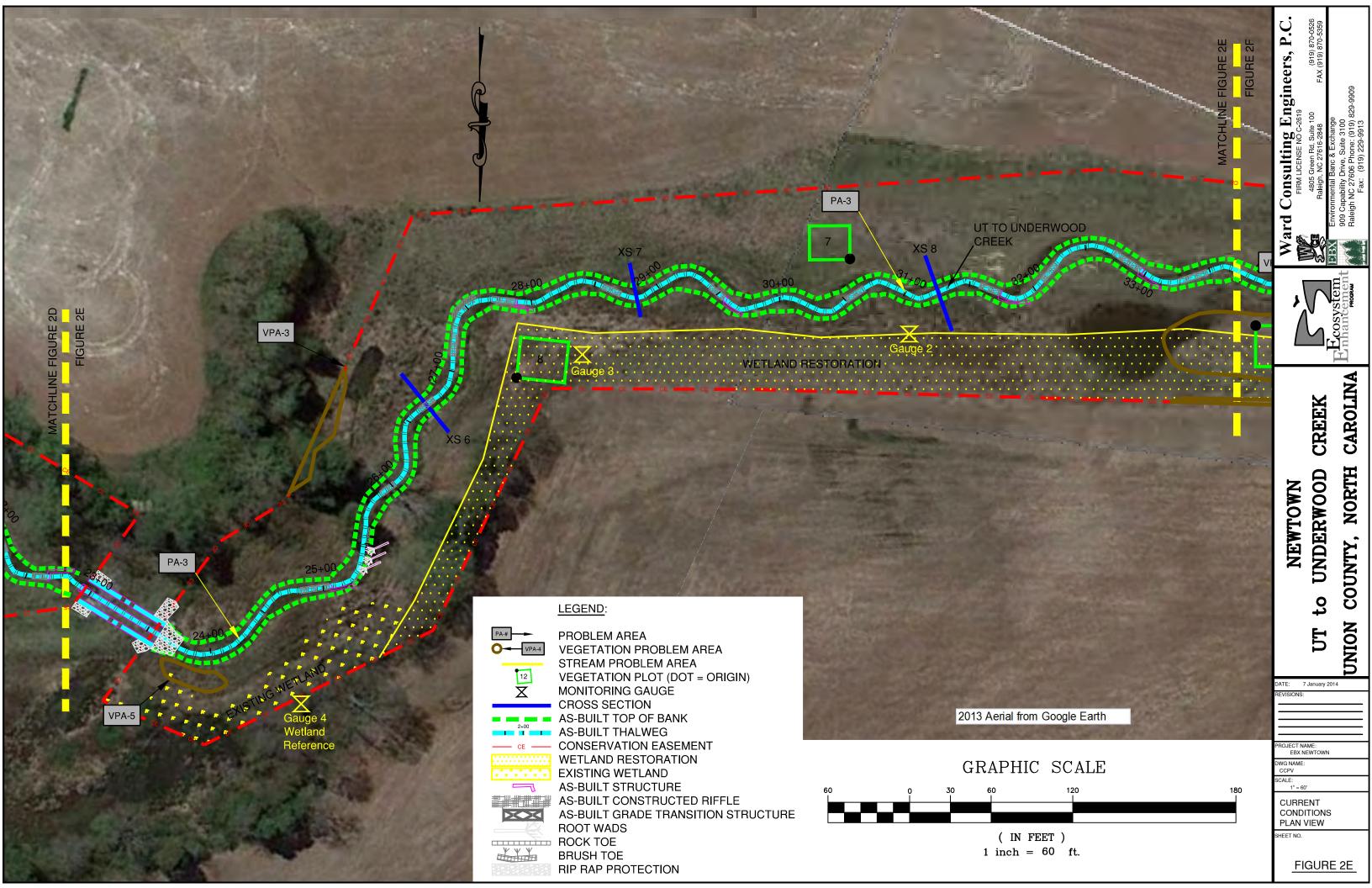
(IN FEET) 1 inch = 200 ft.

FIGURE 2






PA-#	PROBLEM AREA VEGETATION PROBLEM AREA STREAM PROBLEM AREA
12	VEGETATION PLOT (DOT = ORIGIN)
X	MONITORING GAUGE
A	CROSS SECTION
	AS-BUILT TOP OF BANK
2+00	AS-BUILT THALWEG
CE	CONSERVATION EASEMENT
	WETLAND RESTORATION
	EXISTING WETLAND
	AS-BUILT STRUCTURE
	AS-BUILT CONSTRUCTED RIFFLE
	AS-BUILT GRADE TRANSITION STRUCTURE
	ROOT WADS
	ROCK TOE
	BRUSH TOE
	RIP RAP PROTECTION



NEWTOWNRD	Ward Consulting Engineers, P.C.FIAM LICENSE NO C-2619FIAM LICENSE NO C-2613FIAM LICENSE NO C-261
	UNION COUNTY, NORTH CAROLINA
m Google Earth RAPHIC SCALE 60 120 180 (IN FEET) 1 inch = 60 ft.	DATE: 7 January 2014 REVISIONS: PROJECT NAME: EBX NEWTOWN DWG NAME: CCPV SCALE: 1° = 60' CURRENT CONDITIONS PLAN VIEW SHEET NO. FIGURE 2B

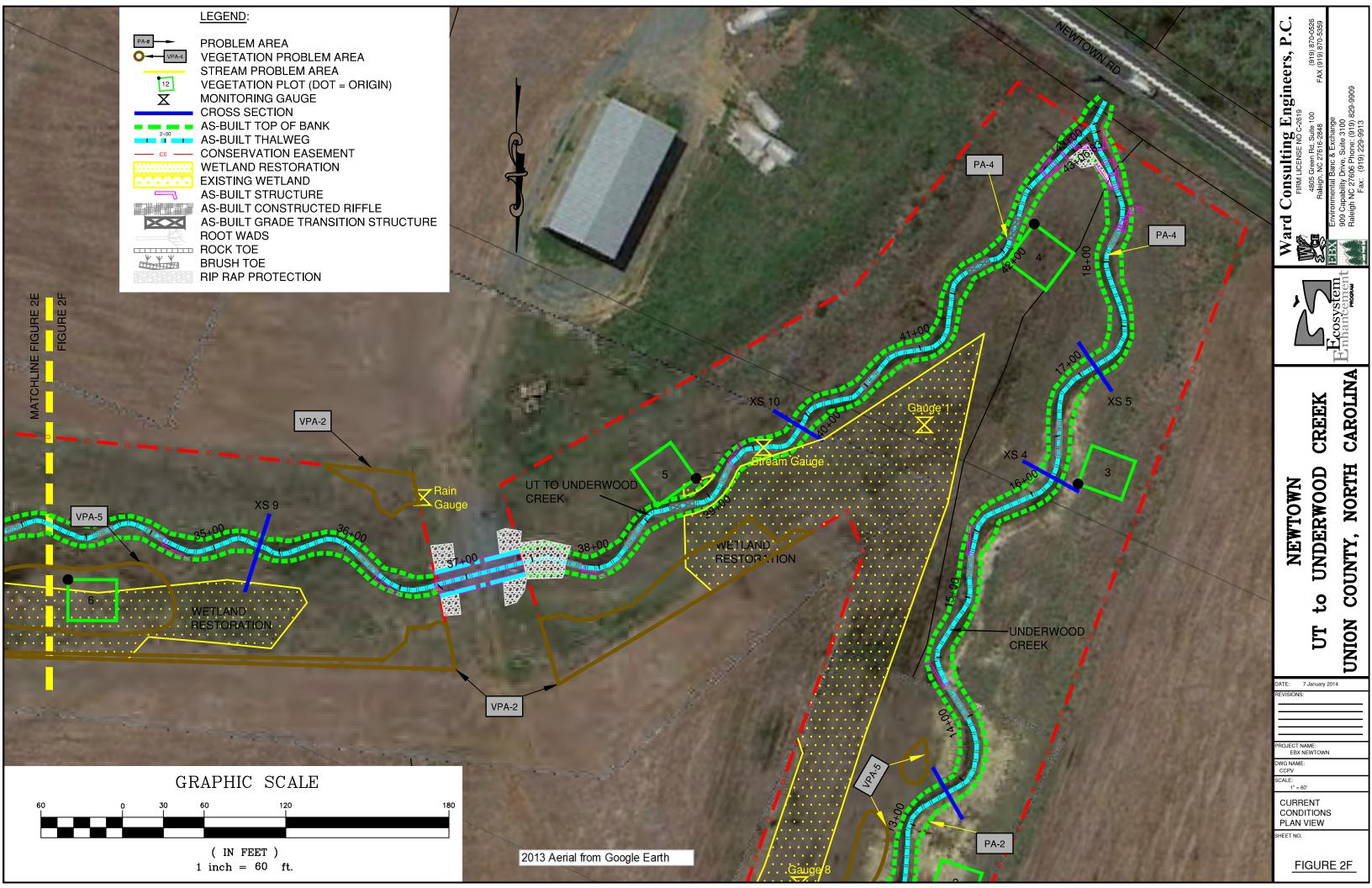


Table 5 Reach ID Assessed Length

Visual Stream Morphology Stability Assessment

Underwood Creek 1273

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0		100%			
		2. <u>Degradation</u> - Evidence of downcutting	1		0		100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	18	22			82%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	24	24			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	24	24			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	22	22			100%			
		2. Thalweg centering at downstream of meander (Glide)	22	22			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0		100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0		100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0		100%			100%
	-		_	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	6			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	5	5			100%			

Table 5 Reach ID Assessed Length

Visual Stream Morphology Stability Assessment

UT to Underwood Creek 3000

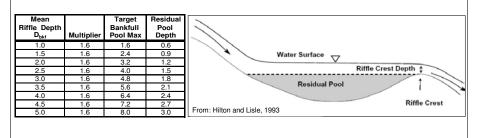
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			4	80	97%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	44	65			68%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	65	65			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	65	65			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	65	65			100%			
		2. Thalweg centering at downstream of meander (Glide)	60	63			95%			
	•	•					8	2		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	19	19			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	18	18			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	18	18			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	17	17			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	16	16			100%			

Criteria, Definitions and Thresholds for Visual Stream Morphology Assessments

Major Channel	Channel Sub-				
Category	Category	Metric	Definitions	Cataloging Threshold	CCPV Depiction
1. Bed	 Vertical Stability (Riffle and Run units) 	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 	Aggradation refers to at least moderate increases in reach stored sediment. It is NOT simply constituted by minor fining of riffles or filling of pools at or below baseflow elevations. An aggrading reach is often characterized by sand or gravel bar formation(growth with associated fining of reach substrate and smoothing of the reach long profile. Barsiaggraded areas significant enough to deflect flow against barks should be catalogued. Repeat channel photopoints are a key tool in assessing project aggradation. (See photo exhibit 1 below for range of example bar development/aggradation)	Catalog only if feature has most of the characteristics described to the left (cell E11) and is at least 15 feet in length or 20% of the riftle/run length, whichever is less.	NA
		 <u>Degradation</u> - Number and size of evident downcuts within Riffle/Run units. 	Where projects have regularly-spaced angineered grade control, degradation/downcutting is expected only in short, decreed lengths. Tolfcateror include perched sill surviums, channel bed "Steps" in disyrich partern taterial, eledence of bad retreta at the bank toe (parent material may be exposed); mobilization of coarse riffle substrate in to pools downstream, and perhaps riffles with run morphology. Long profile surveys should support an assessment of bed degradation where the visual assessment and survey overlap.		Dark Red or Purple Color to be certain to distinguish from Mass Wasting Color Code
	2. Riffle Condition	1. Testure	Riffles should maintain a coarseness similar to the design distribution. Significant fining of the riffle surface indicates non attainment for the riffle. Repeat pebble courts should support an assessment of riffle fining where overlap occurs (see exhibit graphic 2 below describing embedding for gravel-cobble systems).	NA	NA
	3. Meander Pool Condition	1. Deoth Sufficient?	This metric is used to assess meander pools and also step-pools along a Rosgen B-type channel reaches. For stepped reaches the pools will be evaluated and tailed here and under the Habital Sub-Category below. The max pool bankfull depth should be 1.6 times the mean bankfull depth (Max Pool Depth: Maen Bankfull Depth >16.). The mean bankfull depth from the As-builtbaseline survey can be utilized to make this determination. Exhibit 3 provides residual pool depths using the 1.6 multiplier for a range of mean channel riffle depths that typify restoration projects.	NA	NA
		2. Lenath appropriate?	This metric will only be applied to meander pools. The meander pool length should be >30% of the ~ linear centerline distance between the tail of the upstream riffle and the head of the downstream rifle.	NA	NA
	4.Thalweg Position	 Thalweg centering at upstream of meander bend (Run)? 	This metric is used to characterize flow paths along riffle-run-pool transitions. The thalweg is expected to be against the outer bank in the bend apex, but vectors oriented towards the outer bank too far above the bend apex may indicate the potential for increased bank erosion. Similarly, the pool opticerifite transition is also expected to doemostrate flow path centering (Metric 4.2 below). The current-year thalweg rendered on the CCPV figure can assist in this assessment.	NA	NA
		2. Thalweg centering at downstream of meander bend (Glide)?	See Metric 4.1 above	NA	NA
2. Bank	1. Scoured/Eroding Bank	In order to better assess continued bank erosion risk, tailled bank segments are also characterized with respect to the	Banks with evident scour /erosion	Bank Minimum Height Length >6 6 3-6 8	Yellow.
	2. Undercut	proximity and integrated extent of stabilizing vegetation. Continued encision risk for a given bank instability object is essentially adjusted downwards by adjacent mature vegetation and/or stabilizing roots. One or more mature trees in close promithy (e.g. 10 feet or less) or dovicus integration of root mass within the bank failure are characteristics that would prompt the tallying of a given bank object into the additional sub-category related to risk of further instability (columns <u>14</u>) of the <u>actual data</u> . Essentially, the vegetative elements of rooting ensity and eight (e.g. from a BEH assessment)	Banks undercut/overhanging to the extent that mass wasting appears likely? Does NOT include undercuts that modest, appear sustainable/stable and are providing habitat.	<3 10 This table provides a guide for working thresholds for bank erosion cataloging/mapping based on bank height. For the bank height ranges above, the minimum length of	Orange.
	3. Mass Wasting	need to be considered here.	Bank slumping/calving/collapse?	bank to be mapped and tallied is specified. For example, where banks are <3 feet high, only map an unstable segment if it is \geq 10 feet. ⁵	Red.
3. Structures	1. Overall Integrity	The assessment of engineered structure performance should include all structures that provide grade control, bank protection, or habitat functions. These include Vanes, J-hooks, and rootwads, etc.	Bulk of structure physically intact with no disiodged boulders or logs?		Using callouts or some other means to maintain legibility, annotate structure with red "S" if structural failure has occurred
	2. Grade Control		Bed grade control maintained across the sill structure? No evident loss of bed elevation immediately upstream of structure? Some piping alone will not constitute a loss of grade control.		Using callouts or some other means to maintain legibility, annotate structure with red "G" if structure has lost grade control
	2a. Piping		Catalog structures lacking any substantial flow underneath sills or around arms?		Using callouts or some other means to maintain legibility, annotate structure with red "P" if significant piping has occurred
	3. Bank Protection		See exhibit 4 below for determining structural sphere of influence. If the amount of bank that is deemed to be actively eroding within the structures sphere of influence exceeds 15% of the total bank footage within the structures sphere of influence, then the structure should be classified as <u>not</u> providing adequate bank protection in the data table.		Using callouts or some other means to maintain legibility, annotate structure with red "B" if structure has failed to provide bank protection
	4. Habitat		Are pools maintained @ ~ Max Pool Depth : Mean Bankfull Depth > 1.6? For rootwads, habitat provision means interacting with baseflow and providing cover.		Using callouts or some other means to maintain legibility, annotate structure with red "H" if structure is not providing habitat

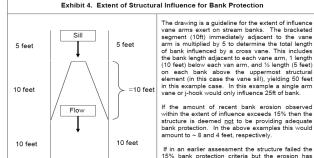
Exhibit 1. Examples of bar features warranting concerning related to cataloging item 1.1.1 of the assessment

Exhibit 2. Graphic depicting embedding of riffles with fine material



Progressing from top to bottom, the series of graphics to the left depicts the fining of interstial spaces between coarser particles. This describes increasing levels of embededness in riffles. The observer must have an understanding of the intended substrate distributions/texture of the bed for the projects riffles when assessing this. However, as a guideline for streams in the coarse gravel to cobble range, the 2nd panel from the top represents a visual guideline for the condition that would begin to elicit concern for this parameter, but still contains a good deal of coarse material. Progressing from that state to the conditions depicted in the the 3rd and 4th panel represents a visual que for significant emdedding.

From USEPA (EPA 841-B-97-003 - Nov 1997)


Exhibit 3. Residual Pool Depth Table - Relating 1.6 criterion for typical mean riffle depths to residual pool depths

This residual pool table was provided in the event the tracking of bankfull at each pool feature to estimate a Dmax was inconvenient. Estimating the residual pool depth by measuring the max pool depth to water surface and subtracting the water depth at the riffle head may provide a more convenient way under certain circumstances to estimate in the field. For this reason the exhibit table provides a relationship between the 1.6 criterion applied to mean riffle depth for the site and the resulting residual pool depths.

5 = The above was developed because of the need to have a threshold given the large number of performers and to avoid spending time trying to catalog and map small objects that if excluded would have minimal overall impacts on the performance percentages. It is a guide that tries to strike a balance between the obvious need to have a threshold, yet provide confidence that the site conditions are accurately represented. For example, a scenario where 1 object nearly exceeding the threshold were to occur every 100 feet of bank height (which would be a high frequency and unlikely) with a bank height of 5 feet, would vield an error of ~3%. However, if the observer is encountering a truly high number of objects just below the threshold in the above table (e.g. > 1 per 100 feet of bank channel on average) and is concerned that the exclsuion of such objects is going to misrepresent the site conditions, then judgement should be applied and objects below the threshold may be cataloged. If a rare condition as described does occur and the thresholds are not utilized then a table footnote explaining this should be included.

Lastly, given the increase in overall area and the implications to stability. greater banks heights required smaller threshold minimums.

criteria.

bank protection. In the above examples this would amount to ~ 8 and 4 feet, respectively. If in an earlier assessment the structure failed the 15% bank protection criteria but the erosion has subsequently stabilized, then the observer can use best professional judgment to determine if the structure is currently meeting the bank protection

Table 6 Vegetation Condition Assessment

Planted Acr

14.3

d	Acreage ¹	
---	----------------------	--

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Pattern and Color	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Pattern and Color	10	0.54	3.8%
			Total	10	0.54	3.8%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Pattern and Color	0	0.00	0.0%
	Cumulative Tota					3.8%

Easement Acreage ²	16.43					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	100 SF	Brown Line	13	0.33	2.0%
			-			
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Brown Line	0	0.00	0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and there of state with any frequency. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where <u>isolated</u> specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons, particularly for situations where the condition for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items if the number of species are limited or in the executive summary.

High Concern:		Low/Moderate Concern:				
Vines	Genus/Species	Shrubs/Herbs	Genus/Species	Shrubs/Herbs	Genus/Species	
Kudzu	Pueraria lobata	Japanese Knotweed	Polygonum cuspidatum	Japanese Privet	Ligustrum Japonicum	
Porcelain Berry	Ampelopsis brevipeduncu	Oriental Bittersweet	Celastrus orbiculatus	Glossy Privet	Ligustrum lucidum	
Japanese Honeysuckle	Lonicera japonica	Multiflora Rose	Rosa multiflora	Fescue	Festuca spp.	
Japanese Hops	Humulus japonicus	Russian olive	Elaeagnus angustifolia	English Ivy	Hedera helix	
Wisterias	Wisteria spp.	Chinese Privet	Ligustrum sinense	Microstegium	Microstegium vimineum	
Winter Creeper	Euonymus fortunei	Chinese Silvergrass	Miscanthus sinensis	Burning Bush	Euonymus alatus	
Bush Killer (Watch List)	Cayratia japonica	Phragmites	Phragmites australis	Johnson Grass	Sorghum halepense	
		Bamboos	Phyllostachys spp	Bush Honeysuckles	Lonicera, spp.	
Trees		Sericea Lespedeza	Sericea Lespedeza	Periwinkles	Vinca minor	
Tree of Heaven	Ailanthus altissima	Garlic Mustard (Watch List)	Alliaria petiolata	Morning Glories	Morning Glories	
Mimosa	Albizia julibrissin	Cogon Grass (Watch List)	Imperata cylindrica	Bicolor Lespedeza (Watch List)	Lespedeza bicolor	
Princess Tree	Paulownia tomentosa	Giant Reed (Watch List)	Arundo donax	Chinese Yams (Watch List)	Dioscorea oppositifolia	
China Berry	Melia azedarach	Tropical Soda Apple (Watch List)	Solanum viarum	Air Potato (Watch List)	Dioscorea bulbifera	
Callery Pear	Pyrus calleryana	Japanese Spirea (Watch List)	Spiraea japonica	Japanese Climbing Fern (Watch List)	Lygodium japonicum	
White Mulberry	Morus alba	Japanese Barberry (Watch List)	Berberis thunbergii			
Tallow Tree (Watch List)	Triadica sebifera					

Stream Station Photos

Photo 1. Looking downstream at Underwood Creek XS-1

Photo 2. Looking downstream at Underwood Creek XS-2

Photo 3. Looking downstream at Underwood Creek XS-3

Photo 4. Looking downstream at Underwood Creek XS-4

Photo 5. Looking downstream at Underwood Creek XS-5

Photo 6. Looking downstream at UT to Underwood Creek XS-1

Photo 7. Looking downstream at UT to Underwood Creek XS-2

Photo 8. Looking downstream at UT to Underwood Creek XS-3

Photo 9. Looking downstream at UT to Underwood Creek XS-4

Photo 10. Looking downstream at UT to Underwood Creek XS-5

Photo 11. Looking downstream at UT to Underwood Creek XS-6

Photo 12. Looking downstream at UT to Underwood Creek XS-7

Photo 13. Looking downstream at UT to Underwood Creek XS-8

Photo 14. Looking downstream at UT to Underwood Creek XS-9

Photo 15. Looking downstream at UT to Underwood Creek XS-10

MY-00 Vegetation Plot Photos April 22, 2011

Veg Plot 1

Veg Plot 2

Veg Plot 3

Veg Plot 4

Ward Consulting Engineers, P.C.

MY-03 Vegetation Plot Photos August 22-23, 2013

Veg Plot 1

Veg Plot 2

Veg Plot 3

Veg Plot 4

Newtown Stream and Wetland Restoration MY-03 Monitoring Report-Final January 2014

Veg Plot 5

Veg Plot 6

Veg Plot 7

Veg Plot 8

Veg Plot 5

Veg Plot 6

Veg Plot 7

Veg Plot 8

Veg Plot 9

Veg Plot 10

Veg Plot 11

Veg Plot 12

Veg Plot 9

Veg Plot 10

Veg Plot 11

Veg Plot 12

Veg Plot 13

Veg Plot 13

Appendix C. Vegetation Plot Data

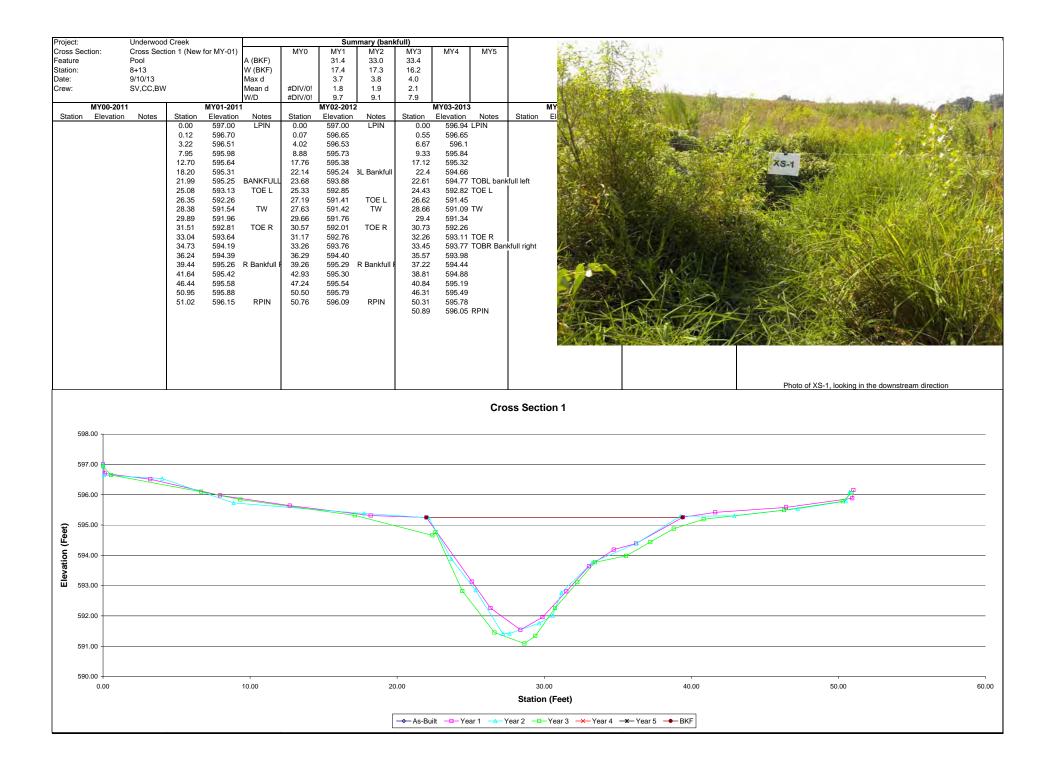
Table 7. Vegetation Plot Criteria Attainment									
Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean							
VP1	Yes								
VP2	Yes								
VP3	Yes								
VP4	No								
VP5	Yes								
VP6	No								
VP7	No	100%							
VP8	No								
VP9	Yes								
VP10	Yes								
VP11	No								
VP12	Yes								
VP13	Yes								

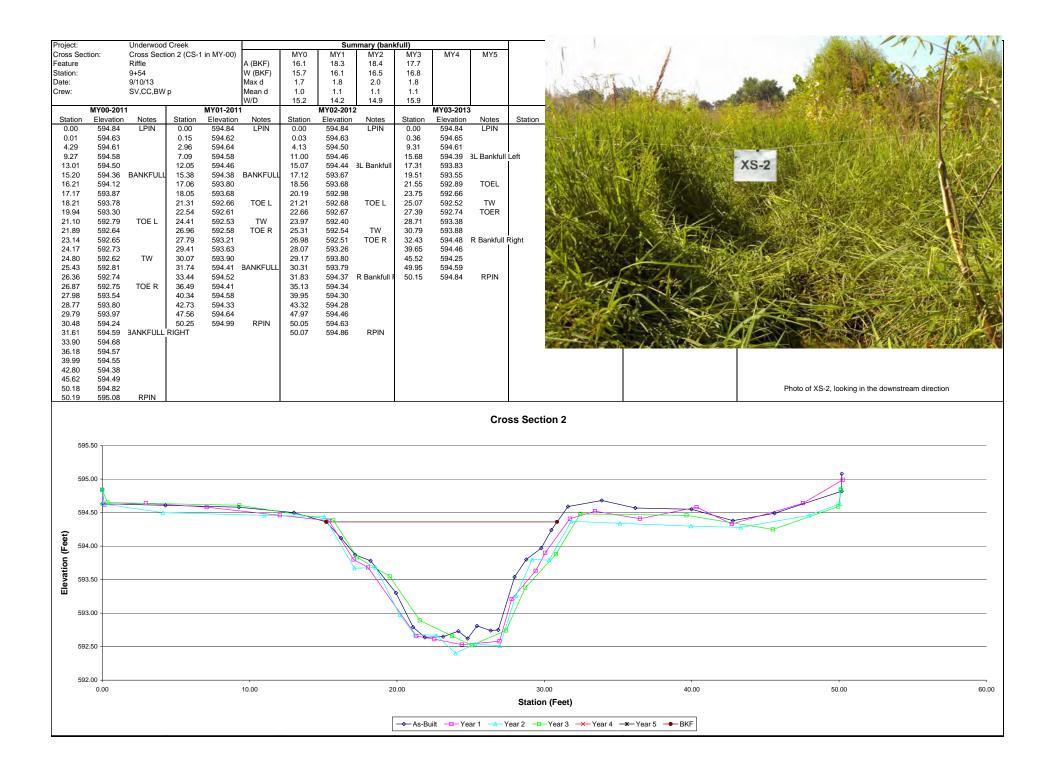
CVS Metadata

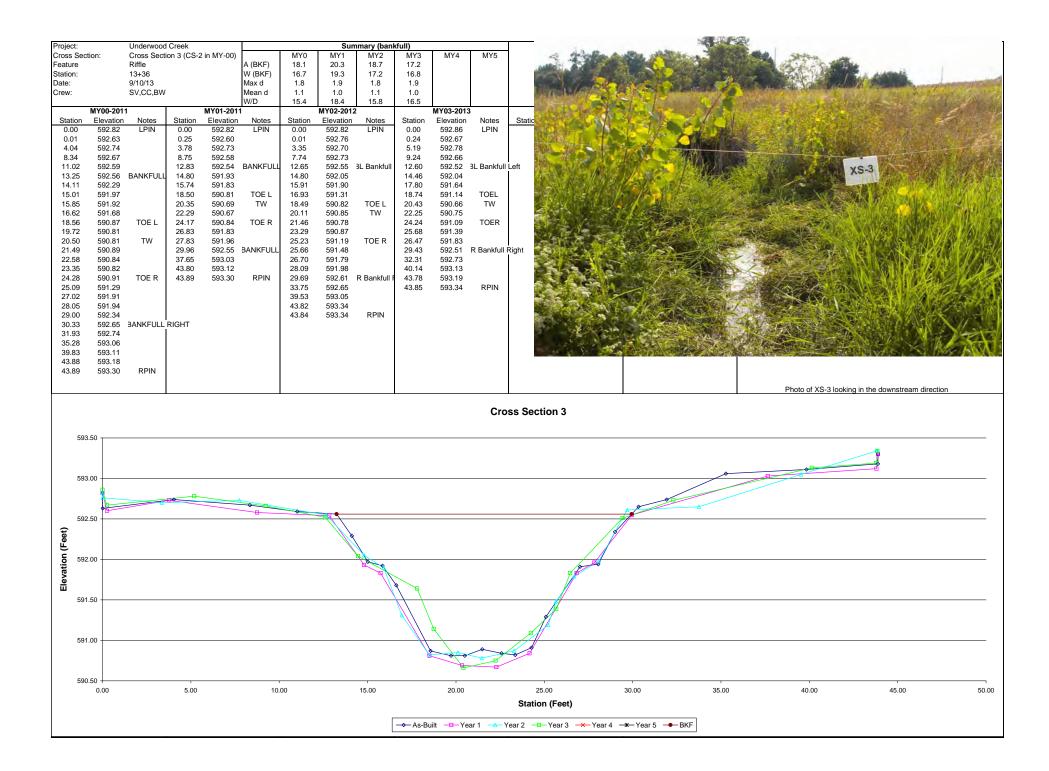
Report Prepared By Chris Sheats Date Prepared 10/23/2013 14:22

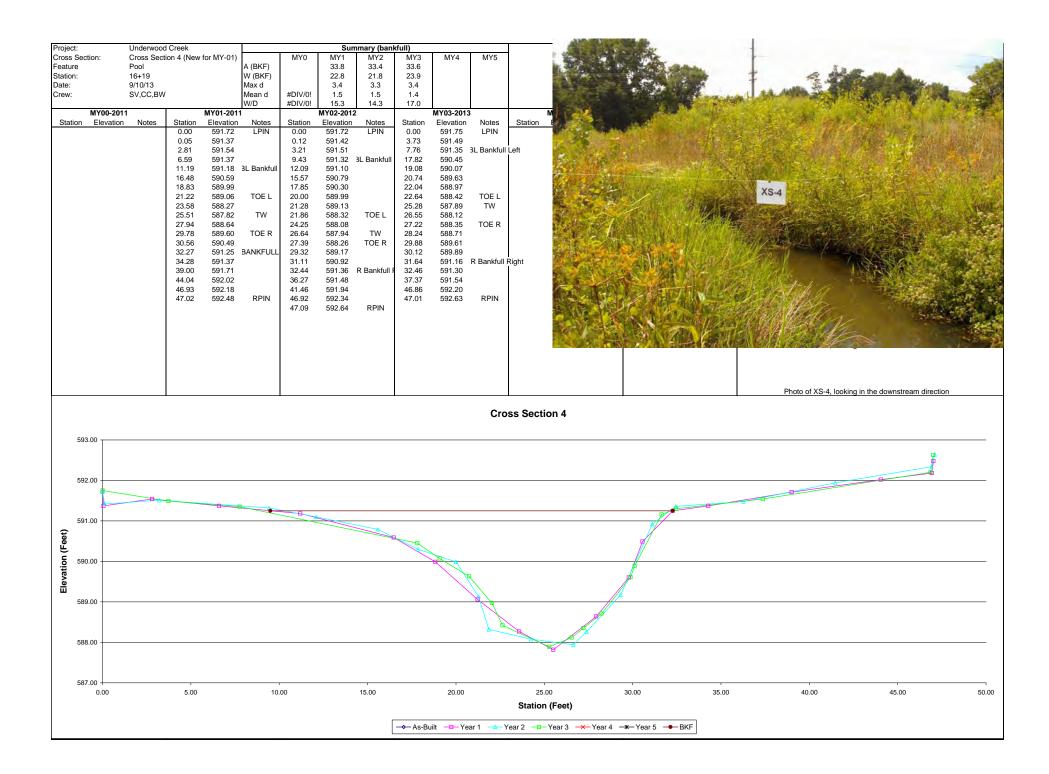
database name	TheCatenaGroup-2012-D.mdb
database location	\\SERVER\RedirectedFolders\csheats\Desktop
computer name	HARNETT
file size	37228544

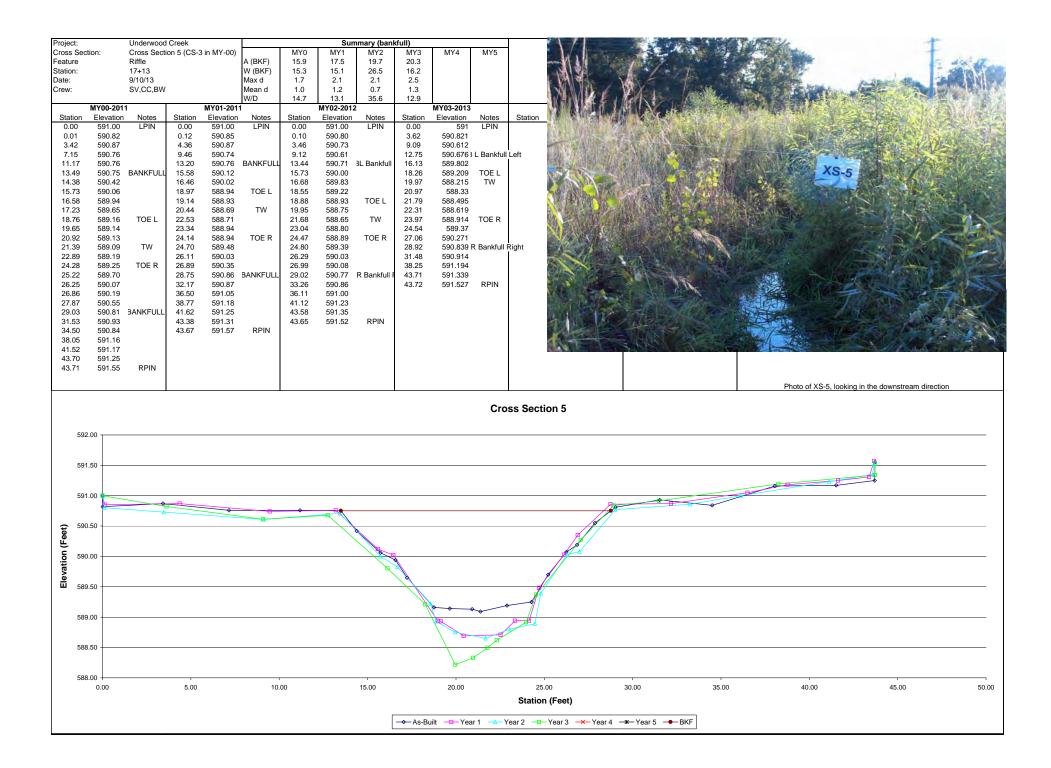
DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT------

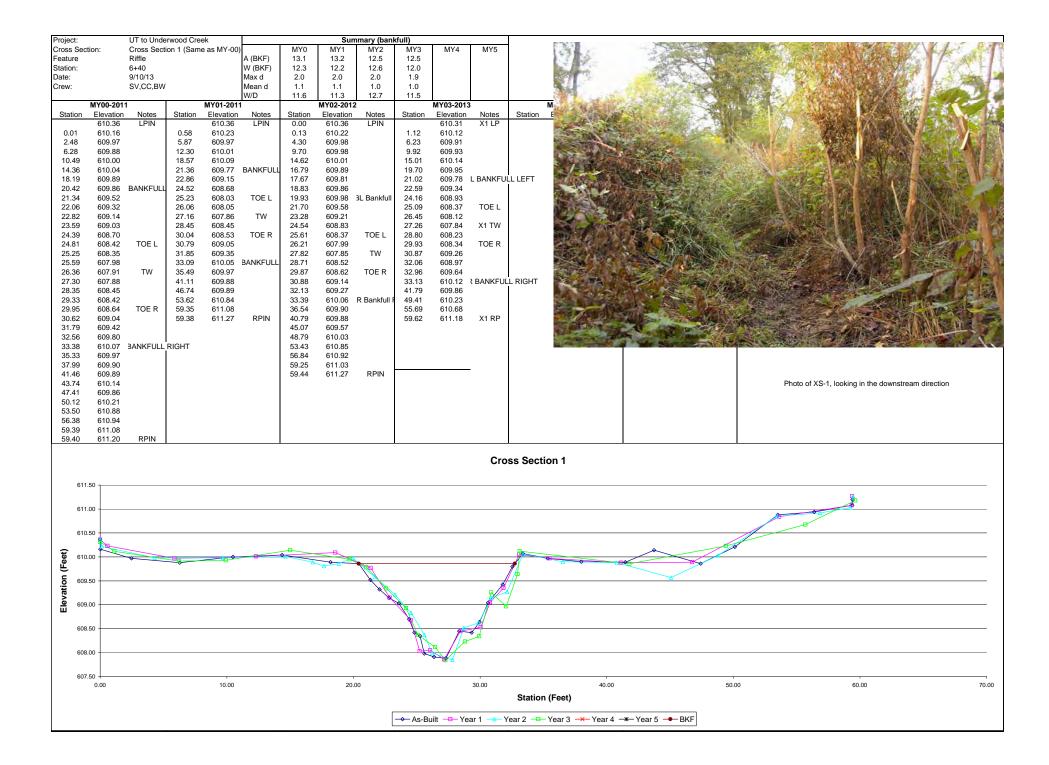

- Metadata Description of database file, the report worksheets, and a summary of project(s) and project data.
- Proj, planted Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
- Proj, total stems Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
- Plots List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
- Vigor Frequency distribution of vigor classes for stems for all plots.
- Vigor by Spp Frequency distribution of vigor classes listed by species.
- Damage List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
- Damage by Spp Damage values tallied by type for each species.
- Damage by Plot Damage values tallied by type for each plot.
- Planted Stems by Plot and Spp A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
- ALL Stems by Plot and spp A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.

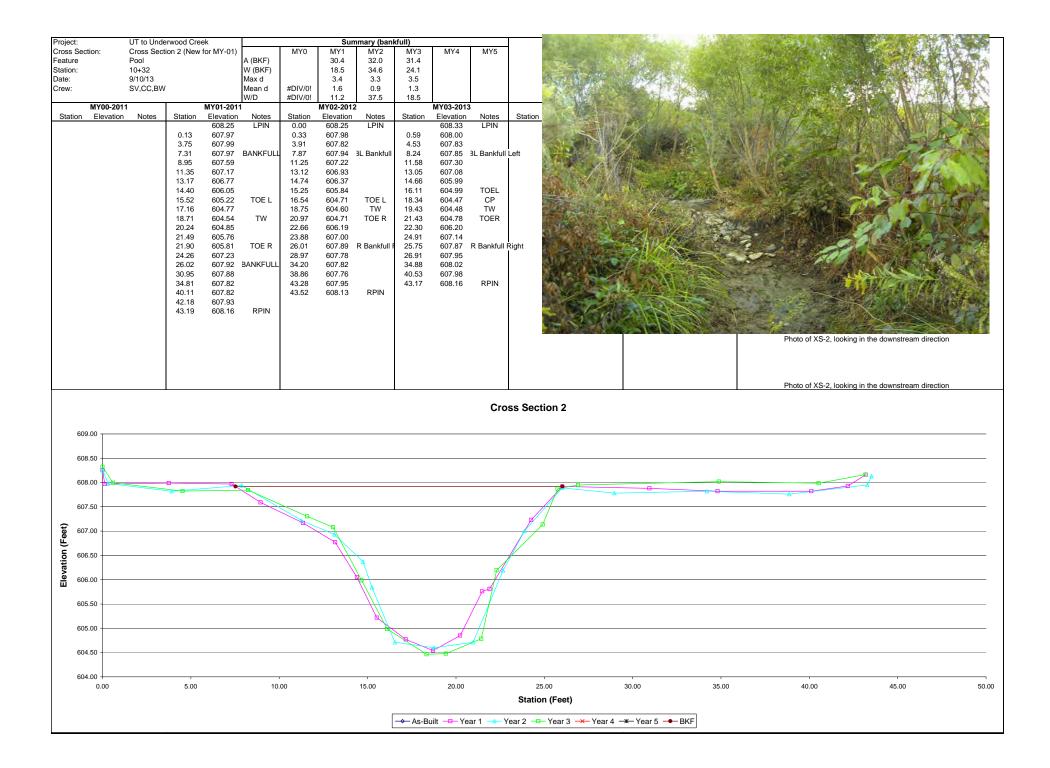

PROJECT SUMMARY	
Project Code	94150
project Name	Newtown Stream and Wetland Restoration
Description	Underwood Creek Stream Restoration in Union County
	southwest of Monroe, NC.
River Basin	Catawba
length(ft)	5317
stream-to-edge width (ft)	50
area (sq m)	49391.55
Required Plots (calculated)	13
Sampled Plots	13

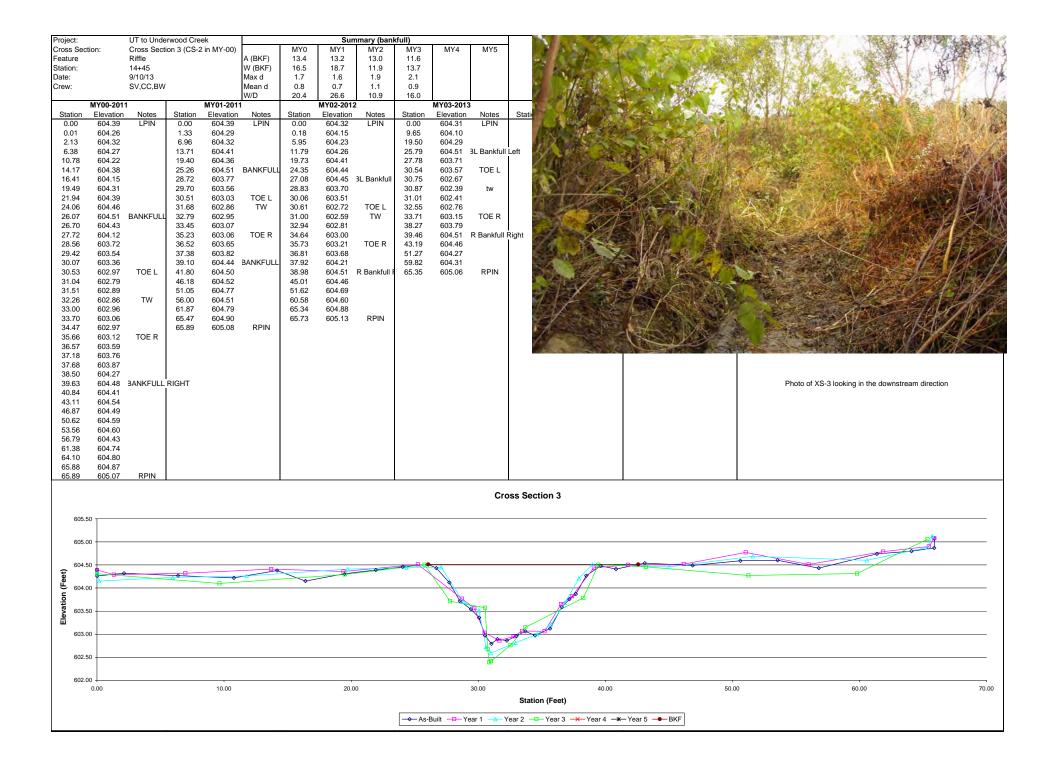

Table 3. Density per Plot EEP Project Code 94156. Project Name: Newtown Stream and Wetland Restoration

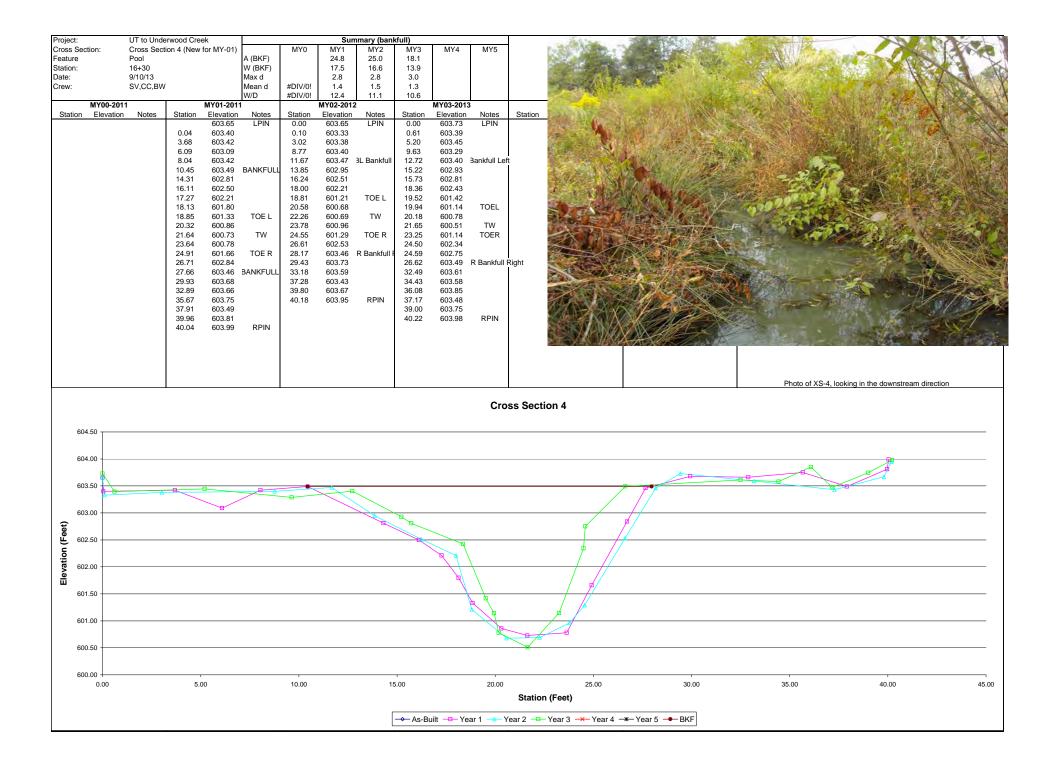

																			Cu	vent Plot Da	ita (MY3 20)	13)																						Annual Mean	m				
			E943	50-01-0001		E94150-0	-0002		94150-01-00	23	E941	50-01-0004	•	[941	50-01-0005		19415	0-01-0000		E94150-	01-0007		194150-01	0008	19	4150-01-000	8	E941	50-01-0010		194150-0	01-0011		94150-01-00	2	E943	50-01-001		MIC	3 (2013)		M	Y2 (2012)		MY1 (2011)		MYD (20	/11)
Scientific Name	Common Name	Species Type	PnoLS P.	all T	Pnot	S P-all	Ŧ	PnoLS	P-all		noLS P-	al T	9	Prois P.	all T	Pno	als P-a	41 T	Pno	IS P-all	т	PnoLS	S P-all	T	PnoLS	P-all T	r Pi	IoLS P-	all T	Pnc	iLS P-all	Ŧ	PnoLS	P-all	r	PnoLS P	all T		nolS P-a	r h	Pnr	10LS P-	-all T	PnoL	LS P-all	T	PnoLS	P-all	т
kimina triloba	pawpaw	Tree																					1	1	1														1	1	1	4	4	4	14	14	14	16	16
laccharis halimifolia	eastern baccharis	Shrub						1		4			3											11			4														30		_	34		_			
letula nigra	river birch	Tree	7	7	7	3	3	1	4	4							1	1	1	1	1	1														1	1	1	17	17	17	17	17	17	20	20	20	24	24
Carpinus caroliniana	American hombeam	Tree																																									_			_		2	2
Carpinus caroliniana var. caroliniana	Coastal American Hornbeam	Tree																		1	1	1																	1	1	1	1	1	1	2	2	2	6	6
larya	hickory	Tree																																								_	_			_		2	2
eltis laevigata	sugarberry	Tree									1	1	1																					1 1	1				2	2	2	4	4	5	9	9	9	5	5
Sephalanthus occidentalis	common buttonbush	Shrub															1	1	2																				1	1	2	1	1	1		_			
Cornus amornum	siky dogwood	Shrub																													2	2	2			1	1	1	3	3	3	3	3	3	4	4	4	3	3
Diospyros vireiniana	common persimmon	Tree																							1	1	1	2	2	2	1	1	1	1 1	1	5	5	5	10	10	10	11	11	11	19	19	19	26	26
Fraxinus pennsylvanica	green ash	Tree							1 1	1			1				2	2	2	3	3	3	1	1	1 3	3	3	2	2	3				2 2	2	2	2	2	16	16	18	17	17	29	17	17	17 .	20	20
anatrum sinense	Chinese privet	Exptic														1																								_	1	_		1		_			
kquidambar styraciflua	sweetgum	Tree								1																	7														8			2			-		
latanus occidentalis	American sycamore	Tree				3	3	3			2	2	2																										5	5	5	5	5	5	6	6	6	7	7
latanus occidentalis var. occidentalis	Sycamore, Plane-tree	Tree												16	16	16				1	1	1	1	1	1 2	2	2												20	20	20	20	20	20	21	21	21	21	21
opulus deltoides	eastern cottonwood	Tree																																							_			90			-		
opulus deltoides var. deltoides	eastern cottonwood				5			1		6			31			20						16					6											6			91						-		
Duercus	çak	Tree				1	1	1																				2	2	2									3	3	3	3	3	3		5		65	65
Quercus michauxii	swamp chestnut oak	Tree	7	7	7	8	8	8 3	5 5	5	2	2	2	1	1	1	1	1	1				1	1	1 5	5	5				3	2	3	5 6	6				39	39	39	41	41	41	41	41 4	41	1	1
Quercus phellos	willow cak	Tree							2 2	2				3	3	3				1	1	1			2	2	2	3	3	3	1	1	1			1	1	1	13	13	13	14	14	34	12	12	12		
thus copalinum	flameleaf sumac	shrub																																								_		2		_			
thus copallinum var. copallinum	flameleaf sumac	shrub			1																																				1						-		
losa multifiora	multiflora rose	Exptic																				1																		_	1	_		1		_			
losa palustris	swamp rose	Shrub																																						-	_			5			1	1	
alix nigra	black willow	Tree											2																												2						-		
Sambucus canadensis	Common Elderberry	Shrub														3																								_	3	_		13		_			
Amus alata	winged elm	Tree																									5													- /	5						1	1	
âmus rubra	slippery elm	Tree																																							_			5			-		
Inknown		Shrub or Tree																																														10	10
Color for Der	rain.	Stem Count	14	14	20	15	15	17 1	2 12	23	5	5	42	20	20	44	5	5	6	7	7	24	4	4 2	2 13	13	35	9	9	10	7	7	7 1	10	10	10	20	16	131	131	276	141	141	297	173	173 1	173 2	.08	208
Exceeds requireme	ents by 10%	size (ares)		1		1	_		1			1			1			1		1			1	-		1			1		1			1			1			13	_		13		1		-	13	
Exceeds requirements, but		size (ACRES)		0.02		0.02		1	0.02			0.02			0.02			0.02		0.0	02		0.02		1	0.02			0.02		0.0	2	1	0.02			0.02			0.32	_		0.32		0.1	12	+	0.32	_
Fails to meet requirements		Species count	2	2	4	4	4	6 .	4	7	1	1	7	1	1	6	4	4	4	-	<	7	4	4	5 5	1	0	4	4	4	4	4	4	4	4	4		6	11	11	22	11	11	22	12	12	12	14	14
Fails to meet requirements		Stems per ACRE	566.5599	SA FROM NO	1 7 7 1 1 6 0 7	0100 607.0	100 007.04	10 411 433	417 6331	010 711	103 1418	103.3438	1600.68	BOD 3713	00.3713 178	0.617 30	1 1418 1	12.24.24	43 8334 38	12200 101						£36.0011			44.33.71 45	1 4 1 1 4	1 1 100	100 101 1	101 401 688	101 6374	101 6374	104 1000	104 4 874	4.47 402	ACCT TOTAL AC	CT TODAL ST.C.	A 1 78 7 AT		110101	114 6 6 1 8 1 8		2423 B38 B	111 E.F. /		497 64

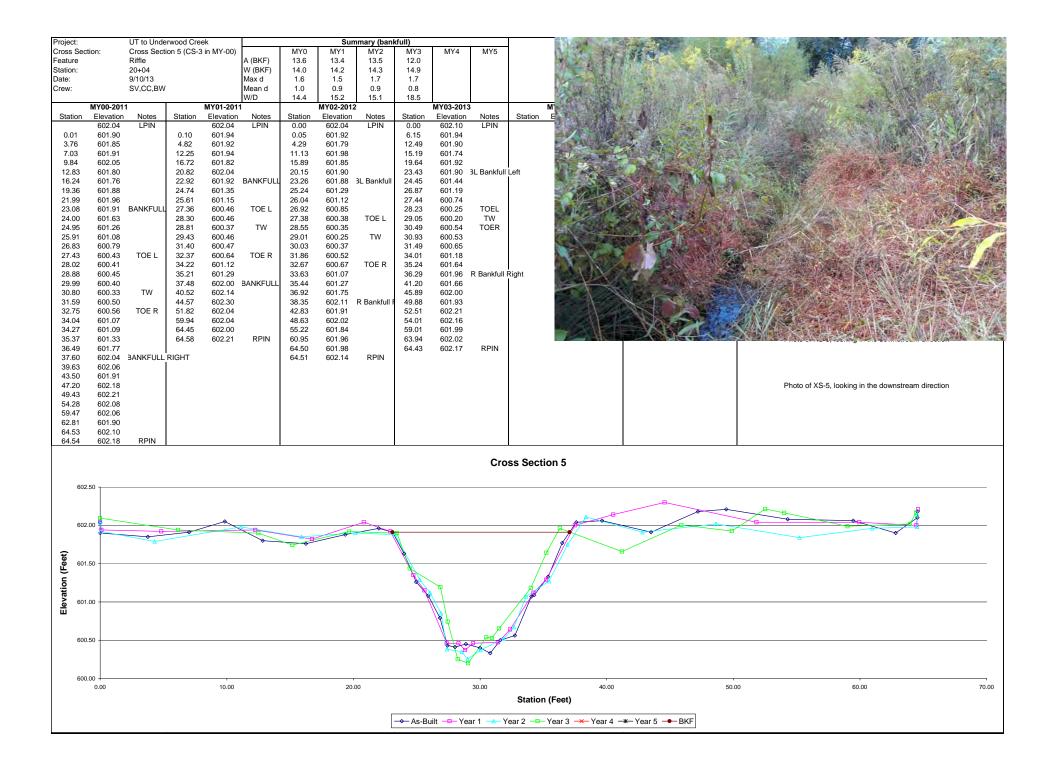

Appendix D. Stream Survey Data

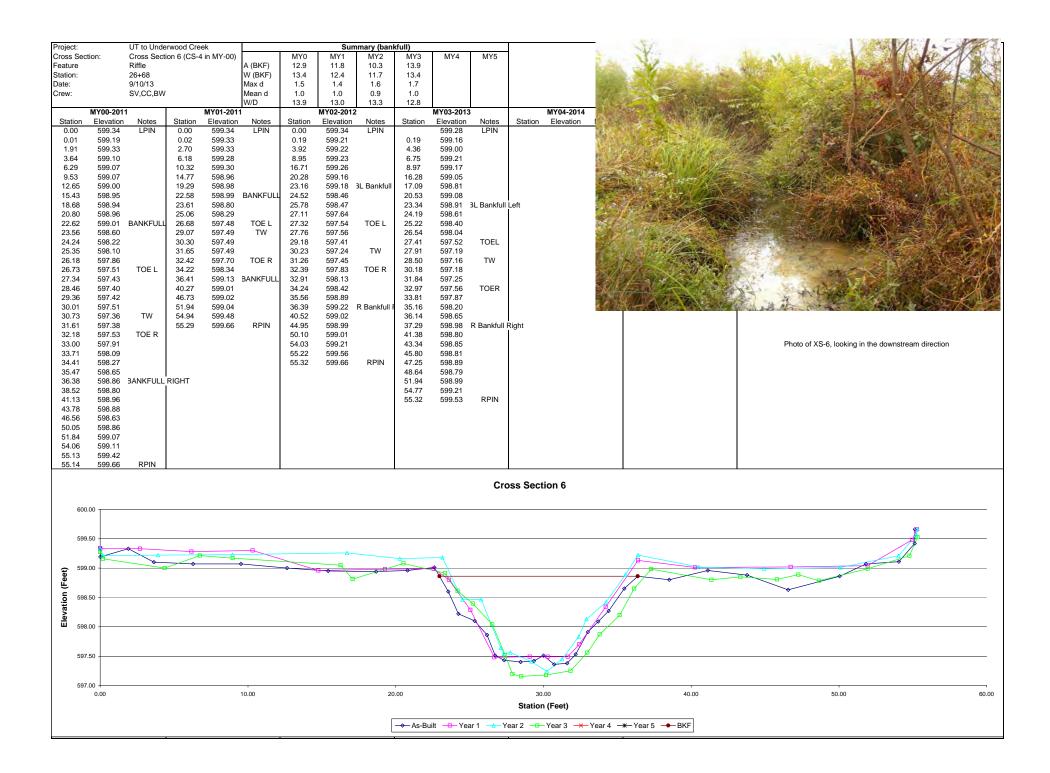


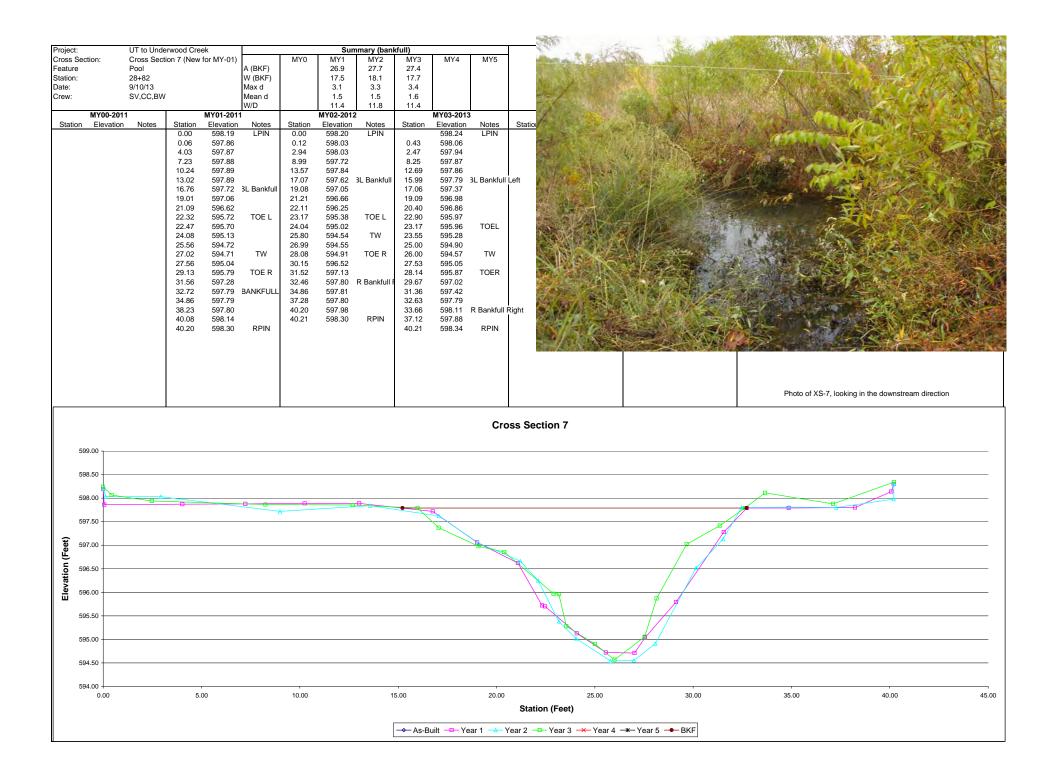


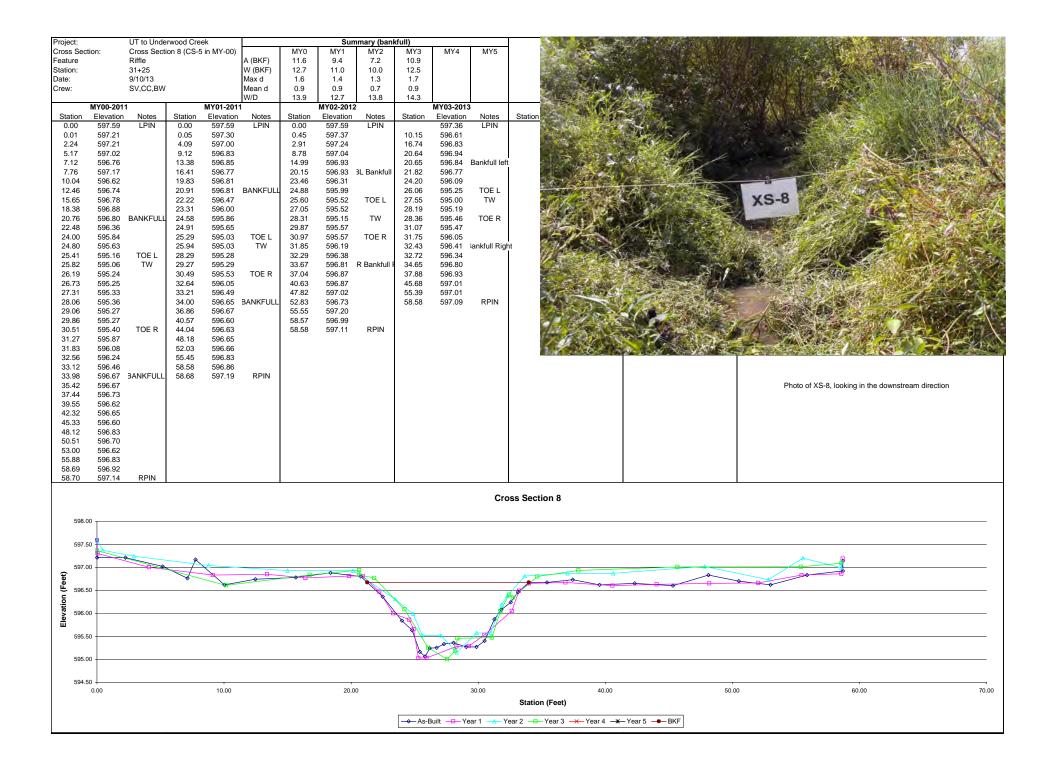


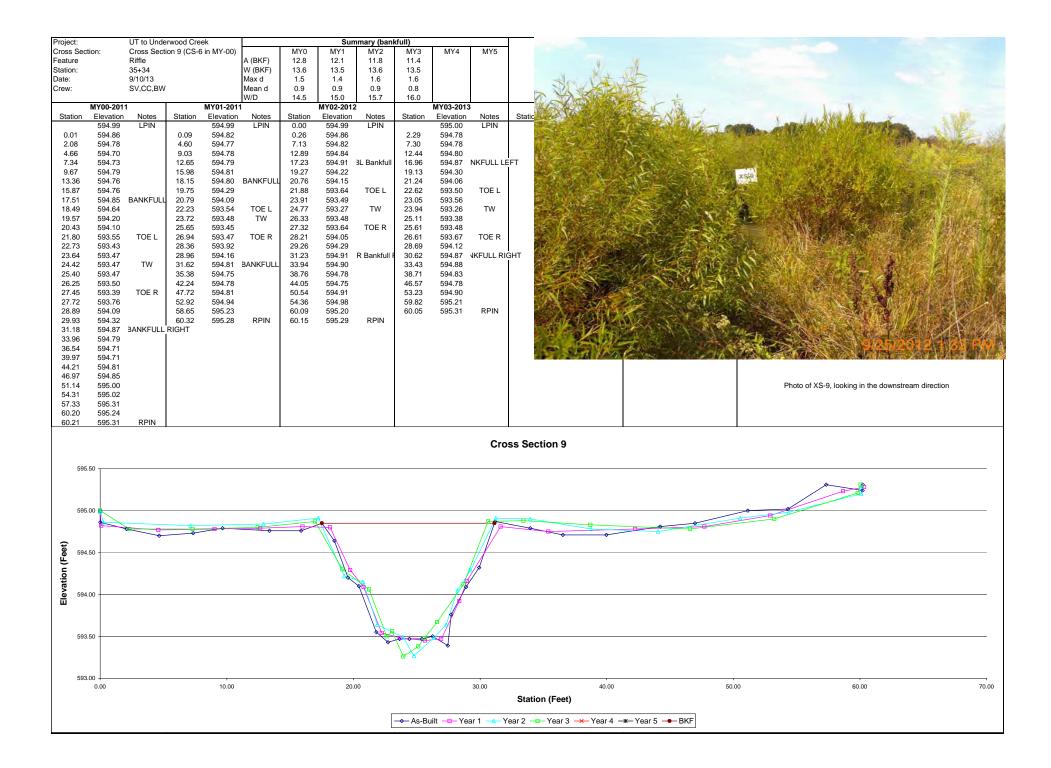


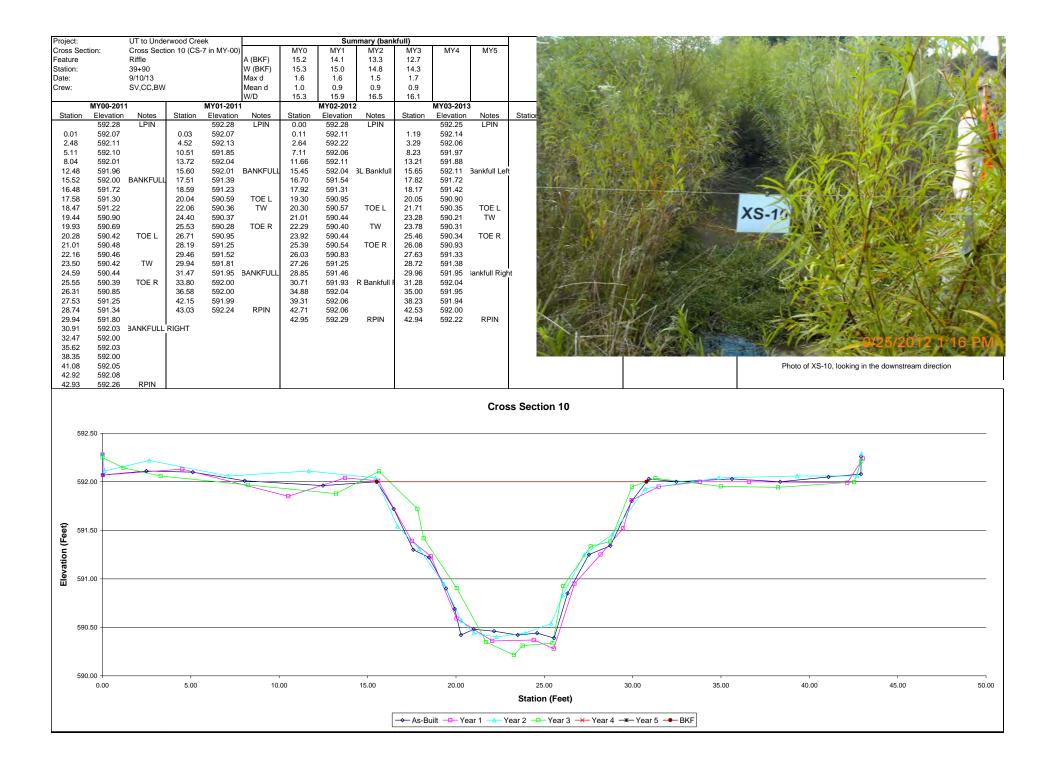


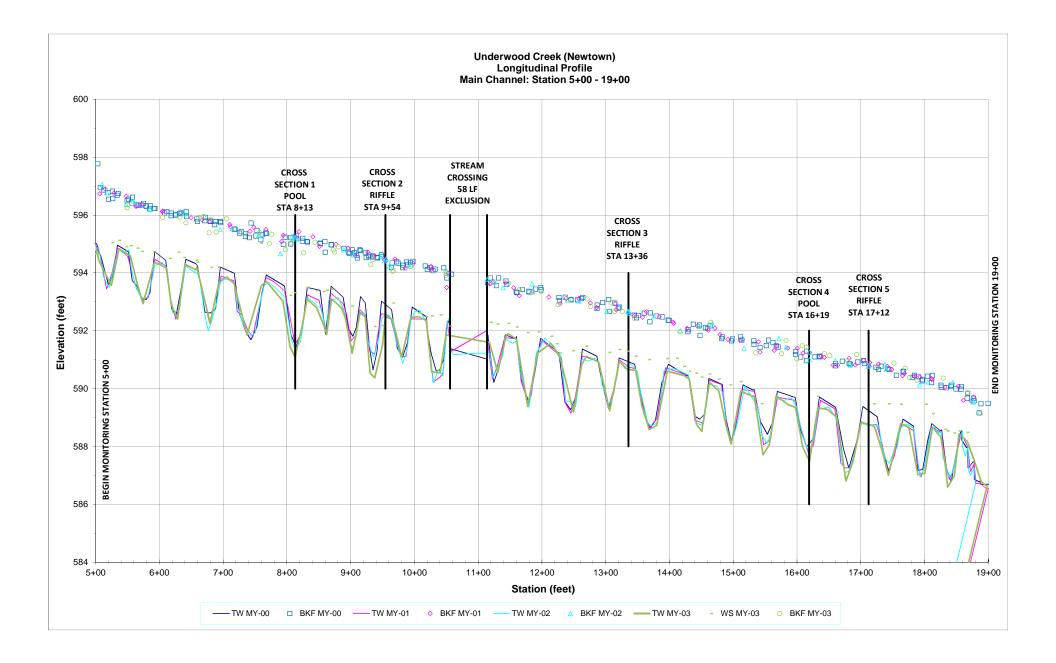


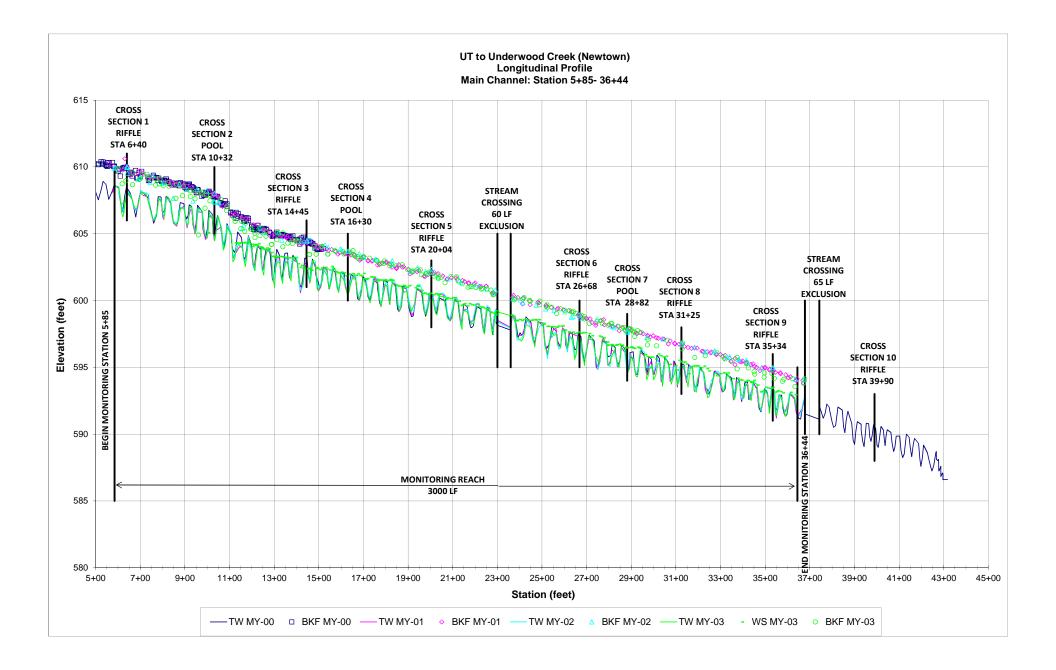


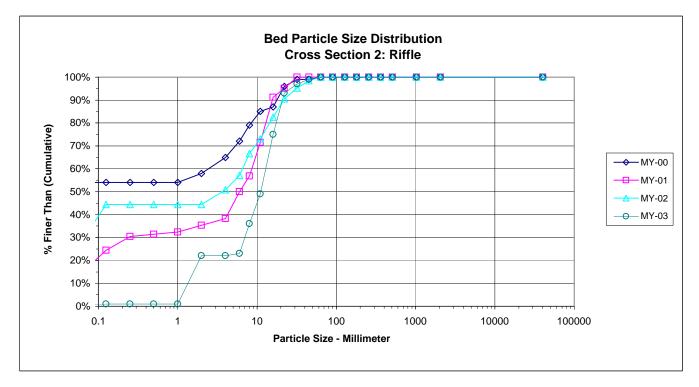


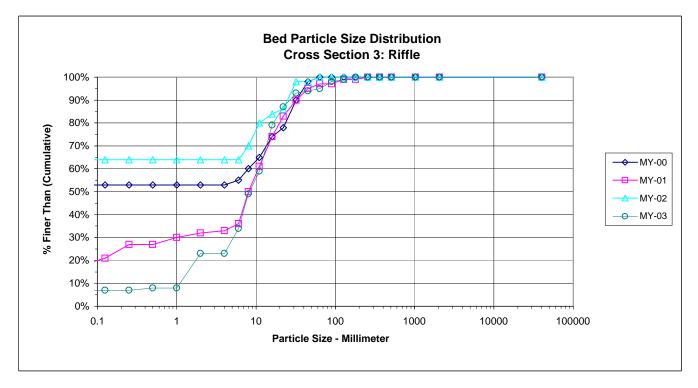




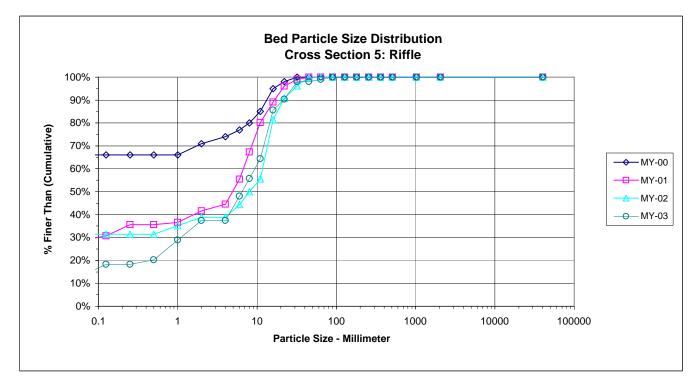




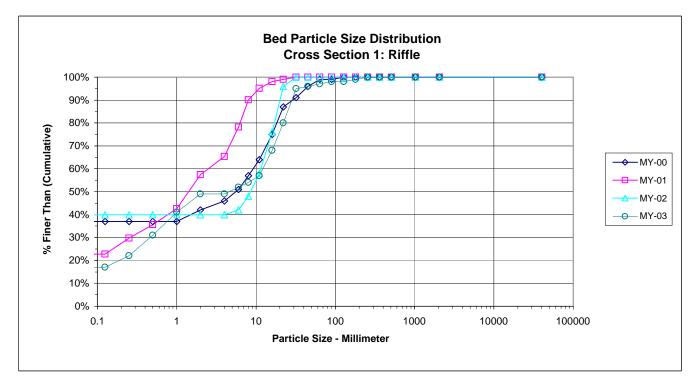



			PEBBLE C	OUNT				
Project:	Underwood C	reek				Date:	9/10/2013	3
Location:	Cross Section	#2						
					Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	1	0	1	1%	1%
	Very Fine	.062125	S		0	0	0%	1%
	Fine	.12525	Α		0	0	0%	1%
	Medium	.2550	N		0	0	0%	1%
	Coarse	.50 - 1.0	D		0	0	0%	1%
.0408	Very Coarse	1.0 - 2.0	S	21	0	21	21%	22%
.0816	Very Fine	2.0 - 4.0			0	0	0%	22%
.1622	Fine	4.0 - 5.7	G	1	0	1	1%	23%
.2231	Fine	5.7 - 8.0	R	13	0	13	13%	36%
.3144	Medium	8.0 - 11.3	Α	13	0	13	13%	49%
.4463	Medium	11.3 - 16.0	V	26	0	26	26%	75%
.6389	Coarse	16.0 - 22.6	Е	18	0	18	18%	93%
.89 - 1.26	Coarse	22.6 - 32.0	<u>L</u>	4	0	4	4%	97%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	2	0	2	2%	99%
1.77 - 2.5	Very Coarse	45.0 - 64.0		1	0	1	1%	100%
2.5 - 3.5	Small	64 - 90	С		0	0	0%	100%
3.5 - 5.0	Small	90 - 128	0		0	0	0%	100%
5.0 - 7.1	Large	128 - 180	В		0	0	0%	100%
7.1 - 10.1	Large	180 - 256			0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В		0	0	0%	100%
14.3 - 20	Small	362 - 512	L		0	0	0%	100%
20 - 40	Medium	512 - 1024	D		0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	100%
	Bedrock		BDRK		0	0	0%	100%
			Totals	100	0	100	100%	100%

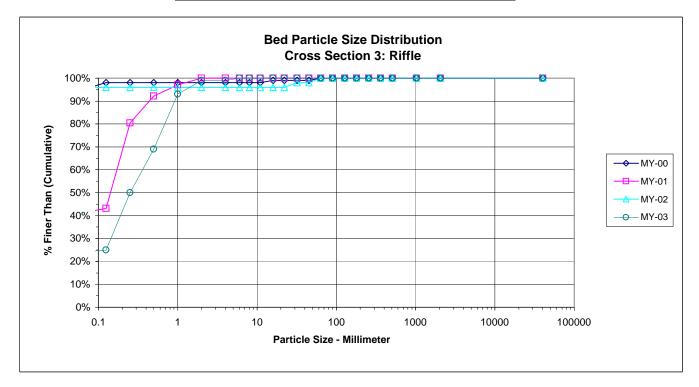
d16	d35	d50	d84	d95
1.7	7.8	11.2	19.0	27.0


			PEBBLE C	OUNT				
Project:	Underwood C	reek				Date:	9/10/201	3
Location:	Cross Section	#3						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	7	0	7	7%	7%
	Very Fine	.062125	S		0	0	0%	7%
	Fine	.12525	Α		0	0	0%	7%
	Medium	.2550	N	1	0	1	1%	8%
	Coarse	.50 - 1.0	D		0	0	0%	8%
.0408	Very Coarse	1.0 - 2.0	S	15	0	15	15%	23%
.0816	Very Fine	2.0 - 4.0			0	0	0%	23%
.1622	Fine	4.0 - 5.7	G	11	0	11	11%	34%
.2231	Fine	5.7 - 8.0	R	15	0	15	15%	49%
.3144	Medium	8.0 - 11.3	A	10	0	10	10%	59%
.4463	Medium	11.3 - 16.0	V	20	0	20	20%	79%
.6389	Coarse	16.0 - 22.6	:E	8	0	8	8%	87%
.89 - 1.26	Coarse	22.6 - 32.0	E	6	0	6	6%	93%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	1	0	1	1%	94%
1.77 - 2.5	Very Coarse	45.0 - 64.0		1	0	1	1%	95%
2.5 - 3.5	Small	64 - 90	С	3	0	3	3%	98%
3.5 - 5.0	Small	90 - 128	0	1	0	1	1%	99%
5.0 - 7.1	Large	128 - 180	В	1	0	1	1%	100%
7.1 - 10.1	Large	180 - 256	L		0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В		0	0	0%	100%
14.3 - 20	Small	362 - 512	E		0	0	0%	100%
20 - 40	Medium	512 - 1024	D		0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	100%
	Bedrock		BDRK		0	0	0%	100%
	· · · · · · · · · · · · · · · · · · ·		Totals	100	0	100	100%	100%

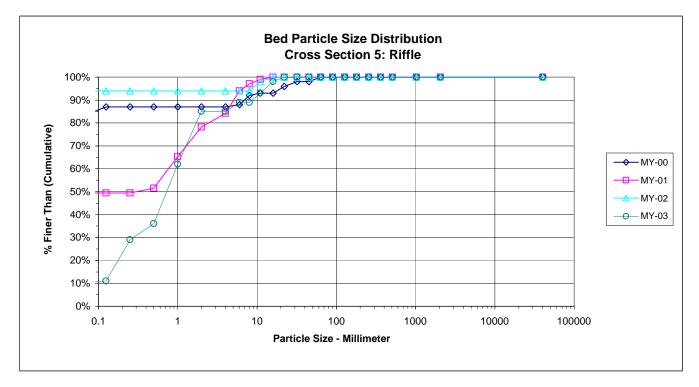
d16	d35	d50	d84	d95
1.5	6.1	8.3	19.8	64.0


			PEBBLE C	OUNT				
Project:	Underwood C	reek				Date:	9/10/2013	3
Location:	Cross Section	#5						
					Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	14	0	14	13%	13%
	Very Fine	.062125	S	5	0	5	5%	18%
	Fine	.12525	Α		0	0	0%	18%
	Medium	.2550	N	2	0	2	2%	20%
	Coarse	.50 - 1.0	D	9	0	9	9%	29%
.0408	Very Coarse	1.0 - 2.0	S	9	0	9	9%	38%
.0816	Very Fine	2.0 - 4.0			0	0	0%	38%
.1622	Fine	4.0 - 5.7	G	11	0	11	11%	48%
.2231	Fine	5.7 - 8.0	R	8	0	8	8%	56%
.3144	Medium	8.0 - 11.3	A	9	0	9	9%	64%
.4463	Medium	11.3 - 16.0	V	22	0	22	21%	86%
.6389	Coarse	16.0 - 22.6	Е	5	0	5	5%	90%
.89 - 1.26	Coarse	22.6 - 32.0	Ŀ	8	0	8	8%	98%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S		0	0	0%	98%
1.77 - 2.5	Very Coarse	45.0 - 64.0		1	0	1	1%	99%
2.5 - 3.5	Small	64 - 90	С	1	0	1	1%	100%
3.5 - 5.0	Small	90 - 128	0		0	0	0%	100%
5.0 - 7.1	Large	128 - 180	В		0	0	0%	100%
7.1 - 10.1	Large	180 - 256			0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В		0	0	0%	100%
14.3 - 20	Small	362 - 512	E		0	0	0%	100%
20 - 40	Medium	512 - 1024	D		0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	100%
	Bedrock		BDRK		0	0	0%	100%
			Totals	104	0	104	100%	100%

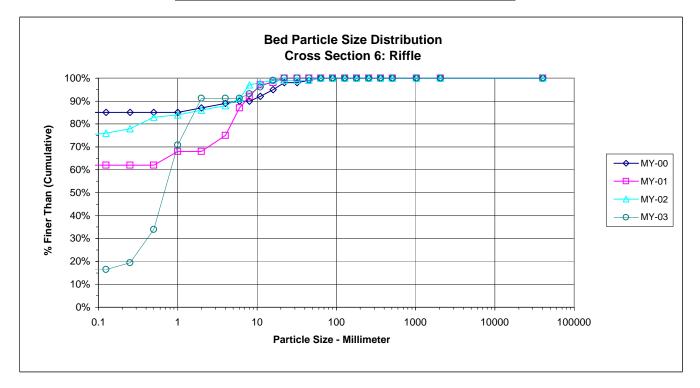
d16	d35	d50	d84	d95
0.1	1.7	6.5	15.6	28.0


			PEBBLE C	OUNT				
Project:	UT to Underw	ood Creek				Date:	9/10/201	3
Location:	Cross Section	#1						
					Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	17	0	17	17%	17%
	Very Fine	.062125	S		0	0	0%	17%
	Fine	.12525	Α	5	0	5	5%	22%
	Medium	.2550	N	9	0	9	9%	31%
	Coarse	.50 - 1.0	D	10	0	10	10%	41%
.0408	Very Coarse	1.0 - 2.0	S	8	0	8	8%	49%
.0816	Very Fine	2.0 - 4.0			0	0	0%	49%
.1622	Fine	4.0 - 5.7	G	3	0	3	3%	52%
.2231	Fine	5.7 - 8.0	R	2	0	2	2%	54%
.3144	Medium	8.0 - 11.3	Α	3	0	3	3%	57%
.4463	Medium	11.3 - 16.0	V	11	0	11	11%	68%
.6389	Coarse	16.0 - 22.6	:E	12	0	12	12%	80%
.89 - 1.26	Coarse	22.6 - 32.0	Ŀ	15	0	15	15%	95%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	1	0	1	1%	96%
1.77 - 2.5	Very Coarse	45.0 - 64.0		1	0	1	1%	97%
2.5 - 3.5	Small	64 - 90	С	1	0	1	1%	98%
3.5 - 5.0	Small	90 - 128	0		0	0	0%	98%
5.0 - 7.1	Large	128 - 180	В	1	0	1	1%	99%
7.1 - 10.1	Large	180 - 256	L	1	0	1	1%	100%
10.1 - 14.3	Small	256 - 362	В		0	0	0%	100%
14.3 - 20	Small	362 - 512	L		0	0	0%	100%
20 - 40	Medium	512 - 1024	D		0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	100%
	Bedrock		BDRK		0	0	0%	100%
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Totals	100	0	100	100%	100%

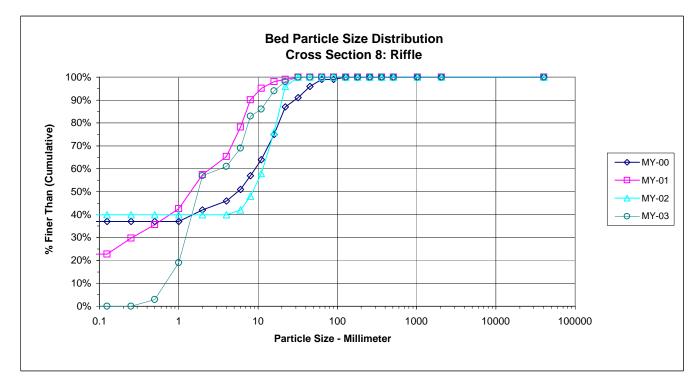
d16	d35	d50	d84	d95
0.1	0.7	4.7	24.7	32.0


			PEBBLE C	OUNT				
Project:	UT to Underw	ood Creek				Date:	9/10/201	3
Location:	Cross Section	#3						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	24	0	24	24%	24%
	Very Fine	.062125	S	1	0	1	1%	25%
	Fine	.12525	Α	25	0	25	25%	50%
	Medium	.2550	N	19	0	19	19%	69%
	Coarse	.50 - 1.0	D	24	0	24	24%	93%
.0408	Very Coarse	1.0 - 2.0	S	6	0	6	6%	99%
.0816	Very Fine	2.0 - 4.0			0	0	0%	99%
.1622	Fine	4.0 - 5.7	G	1	0	1	1%	100%
.2231	Fine	5.7 - 8.0	R		0	0	0%	100%
.3144	Medium	8.0 - 11.3	A		0	0	0%	100%
.4463	Medium	11.3 - 16.0	V		0	0	0%	100%
.6389	Coarse	16.0 - 22.6	E		0	0	0%	100%
.89 - 1.26	Coarse	22.6 - 32.0	E		0	0	0%	100%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S		0	0	0%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0			0	0	0%	100%
2.5 - 3.5	Small	64 - 90	С		0	0	0%	100%
3.5 - 5.0	Small	90 - 128	0		0	0	0%	100%
5.0 - 7.1	Large	128 - 180	В		0	0	0%	100%
7.1 - 10.1	Large	180 - 256	E		0	0	0%	100%
10.1 - 14.3	Small	256 - 362	B		0	0	0%	100%
14.3 - 20	Small	362 - 512	Ŀ		0	0	0%	100%
20 - 40	Medium	512 - 1024	D		0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	100%
	Bedrock		BDRK		0	0	0%	100%
			Totals	100	0	100	100%	100%

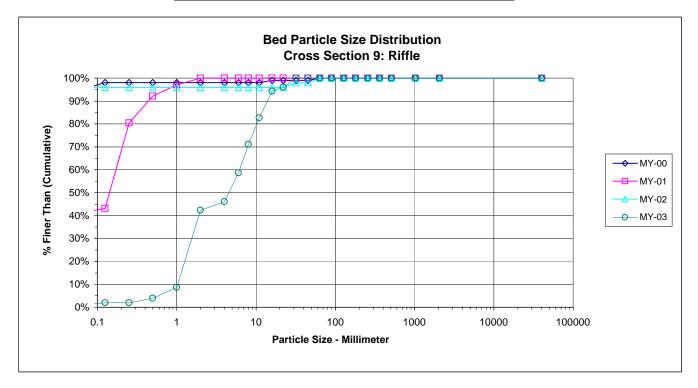
Ĩ	d16	d35	d50	d84	d95
	0.1	0.0	0.3	0.8	1.3


			PEBBLE C	OUNT				
Project:	UT to Underw	ood Creek				Date:	9/10/2013	3
Location:	Cross Section	#5						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	10	0	10	10%	10%
	Very Fine	.062125	S	1	0	1	1%	11%
	Fine	.12525	Α	18	0	18	18%	29%
	Medium	.2550	N	7	0	7	7%	36%
	Coarse	.50 - 1.0	D	26	0	26	26%	62%
.0408	Very Coarse	1.0 - 2.0	S	23	0	23	23%	85%
.0816	Very Fine	2.0 - 4.0			0	0	0%	85%
.1622	Fine	4.0 - 5.7	G	4	0	4	4%	89%
.2231	Fine	5.7 - 8.0	R		0	0	0%	89%
.3144	Medium	8.0 - 11.3	A	4	0	4	4%	93%
.4463	Medium	11.3 - 16.0	V	5	0	5	5%	98%
.6389	Coarse	16.0 - 22.6	E	2	0	2	2%	100%
.89 - 1.26	Coarse	22.6 - 32.0	E		0	0	0%	100%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S		0	0	0%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0			0	0	0%	100%
2.5 - 3.5	Small	64 - 90	С		0	0	0%	100%
3.5 - 5.0	Small	90 - 128	0		0	0	0%	100%
5.0 - 7.1	Large	128 - 180	В		0	0	0%	100%
7.1 - 10.1	Large	180 - 256	·····		0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В		0	0	0%	100%
14.3 - 20	Small	362 - 512	E		0	0	0%	100%
20 - 40	Medium	512 - 1024	D		0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	100%
	Bedrock		BDRK		0	0	0%	100%
			Totals	100	0	100	100%	100%

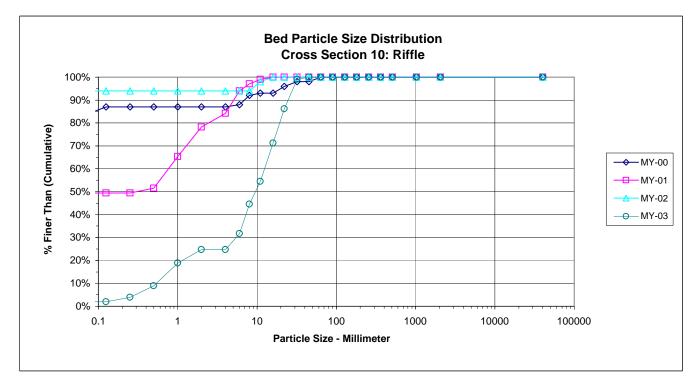
d16	d35	d50	d84	d95
Silt/Clay	0.5	0.8	2.0	13.0


			PEBBLE C	OUNT				
Project:	UT to Underw	ood Creek				Date:	9/10/201	3
Location:	Cross Section	#6						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	17	0	17	17%	17%
	Very Fine	.062125	S		0	0	0%	17%
	Fine	.12525	Α	3	0	3	3%	19%
	Medium	.2550	N	15	0	15	15%	34%
	Coarse	.50 - 1.0	D	38	0	38	37%	71%
.0408	Very Coarse	1.0 - 2.0	S	21	0	21	20%	91%
.0816	Very Fine	2.0 - 4.0			0	0	0%	91%
.1622	Fine	4.0 - 5.7	G		0	0	0%	91%
.2231	Fine	5.7 - 8.0	R	2	0	2	2%	93%
.3144	Medium	8.0 - 11.3	A	3	0	3	3%	96%
.4463	Medium	11.3 - 16.0	· · · · V	3	0	3	3%	99%
.6389	Coarse	16.0 - 22.6	E	1	0	1	1%	100%
.89 - 1.26	Coarse	22.6 - 32.0	L		0	0	0%	100%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S		0	0	0%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0			0	0	0%	100%
2.5 - 3.5	Small	64 - 90	С		0	0	0%	100%
3.5 - 5.0	Small	90 - 128	0		0	0	0%	100%
5.0 - 7.1	Large	128 - 180	В		0	0	0%	100%
7.1 - 10.1	Large	180 - 256	E		0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В		0	0	0%	100%
14.3 - 20	Small	362 - 512	L		0	0	0%	100%
20 - 40	Medium	512 - 1024	D		0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	100%
	Bedrock		BDRK		0	0	0%	100%
			Totals	103	0	103	100%	100%

d16	d35	d50	d84	d95
0.1	0.5	0.7	1.6	9.8


			PEBBLE C	OUNT				
Project:	UT to Underw	ood Creek				Date:	9/10/2013	3
Location:	Cross Section	#8						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C		0	0	0%	0%
	Very Fine	.062125	S		0	0	0%	0%
	Fine	.12525	A		0	0	0%	0%
	Medium	.2550	N	3	0	3	3%	3%
	Coarse	.50 - 1.0	D	16	0	16	16%	19%
.0408	Very Coarse	1.0 - 2.0	S	38	0	38	38%	57%
.0816	Very Fine	2.0 - 4.0		4	0	4	4%	61%
.1622	Fine	4.0 - 5.7	G	8	0	8	8%	69%
.2231	Fine	5.7 - 8.0	R	14	0	14	14%	83%
.3144	Medium	8.0 - 11.3	Α	3	0	3	3%	86%
.4463	Medium	11.3 - 16.0	V	8	0	8	8%	94%
.6389	Coarse	16.0 - 22.6	E	4	0	4	4%	98%
.89 - 1.26	Coarse	22.6 - 32.0	Ŀ	2	0	2	2%	100%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S		0	0	0%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0			0	0	0%	100%
2.5 - 3.5	Small	64 - 90	С		0	0	0%	100%
3.5 - 5.0	Small	90 - 128	0		0	0	0%	100%
5.0 - 7.1	Large	128 - 180	В		0	0	0%	100%
7.1 - 10.1	Large	180 - 256	L		0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В		0	0	0%	100%
14.3 - 20	Small	362 - 512	L		0	0	0%	100%
20 - 40	Medium	512 - 1024	D		0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	100%
	Bedrock		BDRK		0	0	0%	100%
			Totals	100	0	100	100%	100%

d16	d35	d50	d84	d95
0.9	1.4	1.8	9.0	17.5


			PEBBLE C	OUNT				
Project:	UT to Underw					Date:	9/10/201	3
Location:	Cross Section	#9						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	1	0	1	1%	1%
	Very Fine	.062125	S	1	0	1	1%	2%
	Fine	.12525	Α		0	0	0%	2%
	Medium	.2550	N	2	0	2	2%	4%
	Coarse	.50 - 1.0	D	5	0	5	5%	9%
.0408	Very Coarse	1.0 - 2.0	S	35	0	35	34%	42%
.0816	Very Fine	2.0 - 4.0		4	0	4	4%	46%
.1622	Fine	4.0 - 5.7	G	13	0	13	13%	59%
.2231	Fine	5.7 - 8.0	R	13	0	13	13%	71%
.3144	Medium	8.0 - 11.3	A	12	0	12	12%	83%
.4463	Medium	11.3 - 16.0	· · · · V	12	0	12	12%	94%
.6389	Coarse	16.0 - 22.6	:E	2	0	2	2%	96%
.89 - 1.26	Coarse	22.6 - 32.0	E	4	0	4	4%	100%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S		0	0	0%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0			0	0	0%	100%
2.5 - 3.5	Small	64 - 90	С		0	0	0%	100%
3.5 - 5.0	Small	90 - 128	0		0	0	0%	100%
5.0 - 7.1	Large	128 - 180	В		0	0	0%	100%
7.1 - 10.1	Large	180 - 256			0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В		0	0	0%	100%
14.3 - 20	Small	362 - 512	Ŀ		0	0	0%	100%
20 - 40	Medium	512 - 1024	D		0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	100%
	Bedrock		BDRK		0	0	0%	100%
· · · · · · · · · · · · · · · · · · ·			Totals	104	0	104	100%	100%

d16	d35	d50	d84	d95
1.2	1.8	4.6	11.6	18.4

			PEBBLE C	OUNT				
Project:	UT to Underw	ood Creek				Date:	9/10/2013	3
Location:	Cross Section	#10						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	2	0	2	2%	2%
	Very Fine	.062125	S	0	0	0	0%	2%
	Fine	.12525	Α	2	0	2	2%	4%
	Medium	.2550	N	5	0	5	5%	9%
	Coarse	.50 - 1.0	D	10	0	10	10%	19%
.0408	Very Coarse	1.0 - 2.0	S	6	0	6	6%	25%
.0816	Very Fine	2.0 - 4.0			0	0	0%	25%
.1622	Fine	4.0 - 5.7	G	7	0	7	7%	32%
.2231	Fine	5.7 - 8.0	R	13	0	13	13%	45%
.3144	Medium	8.0 - 11.3	A	10	0	10	10%	54%
.4463	Medium	11.3 - 16.0	V	17	0	17	17%	71%
.6389	Coarse	16.0 - 22.6	E	15	0	15	15%	86%
.89 - 1.26	Coarse	22.6 - 32.0	E	13	0	13	13%	99%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	1	0	1	1%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0			0	0	0%	100%
2.5 - 3.5	Small	64 - 90	С		0	0	0%	100%
3.5 - 5.0	Small	90 - 128	0		0	0	0%	100%
5.0 - 7.1	Large	128 - 180	В		0	0	0%	100%
7.1 - 10.1	Large	180 - 256	E		0	0	0%	100%
10.1 - 14.3	Small	256 - 362	В		0	0	0%	100%
14.3 - 20	Small	362 - 512	Ŀ		0	0	0%	100%
20 - 40	Medium	512 - 1024	D		0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	100%
	Bedrock		BDRK		0	0	0%	100%
			Totals	101	0	101	100%	100%

l	d16	d35	d50	d84	d95
	0.9	6.5	9.7	21.1	28.9

						New					am Da erwood			3 feet											
Parameter	Gauge ²	Reg	ional C	urve				g Condi						each(es) Data			Desigr	ı		Мо	onitorin	g Base	line	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Мах	SD ⁵	n
Bankfull Width (ft)				8.3	11.72		16.3			10	12.2		14.3				16		15.272	15.878	15.667	16.694	0.7338	3
Floodprone Width (ft)				12	58		107									130	140	250	110	158.33	140	225	59.652	3
Bankfull Mean Depth (ft)				0.93	1.16		1.29			0.92	1.12		1.34				1.06		1.0281	1.0491	1.0349	1.0842	0.0306	3
¹ Bankfull Max Depth (ft)				1.02	1.58		2.05										1.6		1.66	1.7167	1.74	1.75	0.0493	3
Bankfull Cross Sectional Area (ft ²)				10.5	13.3		19.6			12.2	13		13.4				17		15.806	16.671	16.108	18.099	1.2459	3
Width/Depth Ratio)				6.5	10.42		16.8			7.7	11.3		15.6				15		14.757	15.131	15.238	15.398	0.3337	3
Entrenchment Ratio					1.47	4.65		7.71			2.9	6.5		8.6			8	9	16	7.2026	9.8721	8.9357	13.478	3.2408	3
¹ Bank Height Ratio					1.61	1.83		2.28			0.9	1		1.2				1		1	1	1	1	0	3
Profile																									
Riffle Length (ft)				6.33	37.84		106.87			4.03	14.18		23.61			10	21.696	58	7.36	20.808	20.505	31.54	5.5775	22
Riffle Slope (ft/ft)				0.0001	0.0537		0.2384			0	0.0202		0.0815			0.0069	0.0125	0.0171	0.0034	0.0132	0.0135	0.0285	0.0054	22
Pool Length (ft)				19.07	55.73		119.93			18.51	32.11		58.03			19	35.957	54	17.45	34.809	34.925	52.82	7.6111	24
Pool Max depth (ft)				2	2.31		3.1			1.7	2.47		3.1			2.4	3.5	4.5	2.76	3.4017	3.43	4.04	0.374	24
Pool Spacing (ft)				34	91		245			29	48		84			37	63	110	31.47	55.969	54.565	78.46	10.484	22
Pattern																									
Channel Beltwidth (ft)				35	47.8		56		1	25	40	1	65			34	53	86	34	1	53	86		
Radius of Curvature (ft)				7	47		173			20	31		122			26	41	59	26		41	59		í – – – – – – – – – – – – – – – – – – –
Rc:Bankfull width (ft/ft)				0.06	0.04		0.148			0.016	0.0255		0.037			0.016	0.0255	0.037	0.016		0.0255	0.037		í —
Meander Wavelength (ft)				55	113.57		245			62	85.5		99			82	112	130	82		112	130		í —
Meander Width Ratio					1.84	2.52		2.95			2.1	3.3		5.4			2.1	3.3	5.4	2.1		3.3	5.4		í –
Transport parameters																									
Reach Shear Stress (competency) lb/f	2						0.4	45										0.43				0.	43		
Max part size (mm) mobilized at bankful	l																	60				6	0		
Stream Power (transport capacity) W/m	2																								
Additional Reach Parameters																									
Rosgen Classification	ı						incised	C4/E4			I		E4	/C4				C4		I		C	4		
Bankfull Velocity (fps)						4.0	05										3.3		1		3	.3		
Bankfull Discharge (cfs)						5	5												_	_		_	_	
Valley length (ft)		-	-			11	10					5	42											
Channel Thalweg length (ft)						11				Ī			50				1331				13	31		
Sinuosity (ft)						1.0				Ī			.2				1.3		Ī			.3		
Water Surface Slope (Channel) (ft/ft)						0.0				Ī			065				0.0048		Ī		0.0			
BF slope (ft/ft)						0.0	071			Ì		0.0	114				0.0048				0.0	048		
³ Bankfull Floodplain Area (acres)										Ī									Ī					
⁴ % of Reach with Eroding Banks	6																	_	_						
Channel Stability or Habitat Metric											Ī														
Biological or Othe	r																								
haded cells indicate that these will typically not be filled in.																									_

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Parameter Gauge ² Region Dimension and Substrate - Riffle Only LL Bankfull Width (t) LL Bankfull Width (t) Image: Comparison of the system of the sys	ional Curve UL Eq. UL I A GA I	Min 6.3 19 0.73 1.1 7.3 5.4 2 1.26 1.64 0.0002 8.87 1.3 8.57 40	Mean 11.75 109 1.12 1.92 12.9 11.21 9.04 1.31 4 38.85 2 0.021 7 54.34 3		Max 16 352 1.56 2.6 18.8 19.8 29.3 1.99 289.95 0.121 435 4.8		n	Min 10 0.92 12.2 7.7 2.9 0.9 4.03 0			Max 14.3 1.34 13.4 15.6 8.6 1.2		n	Min 95 6.8	Med 14 160 0.98 1.4 13.7 14.3 11 1	Max 220 16	Min 12.322 95 0.8103 1.46 11.585 11.629 6.9727 0.9419	Mean 13.977 172.86 0.9506 1.6371 13.225 14.868 12.435	Med 13.625 135 0.963 1.61 13.057 14.373 8.8446 0.9848	Max 16.516 280 1.0596 1.98 15.215 20.383 22.723 1	SD ⁵ 1.4652 76.095 0.0775 0.1729 1.0894 2.6834 5.7683 0.0254	n 7 7 7 7 7 7 7
Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) ¹ Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft ²) Width/Depth Ratio Entrenchment Ratio ¹ Bank Height Ratio Profile Riffle Length (ft) Pool Length (ft) Pool Length (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Re:Bankfull width (ft/ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio	UL Eq	6.3 19 0.73 1.1 7.3 5.4 2 1.26 1.64 0.0002 8.87 1.3 8.5 40	11.75 109 1.12 1.92 12.9 11.21 9.04 1.31 4 38.85 2 0.021 7 54.34 3 2.57 105	Med	16 352 1.56 2.6 18.8 19.8 29.3 1.99 289.95 0.121 435 4.8	SD ⁵	n	10 0.92 12.2 7.7 2.9 0.9 4.03	12.2 1.12 13 11.3 6.5 1 14.18	Med	14.3 1.34 13.4 15.6 8.6 1.2	SD ⁵	n 	95	14 160 0.98 1.4 13.7 14.3 11	220	12.322 95 0.8103 1.46 11.585 11.629 6.9727	13.977 172.86 0.9506 1.6371 13.225 14.868 12.435	13.625 135 0.963 1.61 13.057 14.373 8.8446	16.516 280 1.0596 1.98 15.215 20.383	1.4652 76.095 0.0775 0.1729 1.0894 2.6834 5.7683	7 7 7 7 7 7 7 7
Floodprone Width (ft) Bankfull Mean Depth (ft) ¹ Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft ²) Width/Depth Ratio Entrenchment Ratio ¹ Bank Height Ratio Profile Riffle Length (ft) Pool Length (ft) Pool Length (ft) Pool Spacing (ft) Pattern Channel Beltwidth (ft) Re:Bankfull width (ft/ft) Meander Wavelength (ft) Meander Width Ratio		19 0.73 1.1 7.3 5.4 2 1.26 1.64 0.0002 8.87 1.3 8.5 40	109 1.12 1.92 12.9 11.21 9.04 1.31 4 38.85 0.021 7 54.34 2.57 5		352 1.56 2.6 18.8 19.8 29.3 1.99 289.95 0.121 435 4.8			0.92 12.2 7.7 2.9 0.9 4.03	1.12 13 11.3 6.5 1 14.18		1.34 13.4 15.6 8.6 1.2			6.8	160 0.98 1.4 13.7 14.3 11		95 0.8103 1.46 11.585 11.629 6.9727	172.86 0.9506 1.6371 13.225 14.868 12.435	135 0.963 1.61 13.057 14.373 8.8446	280 1.0596 1.98 15.215 20.383	76.095 0.0775 0.1729 1.0894 2.6834 5.7683	7 7 7 7 7 7
Bankfull Mean Depth (ft) Image: Sectional Area (ft ²) Bankfull Cross Sectional Area (ft ²) Image: Sectional Area (ft ²) Width/Depth Ratio Image: Sectional Area (ft ²) Bankfull Cross Sectional Area (ft ²) Image: Sectional Area (ft ²) Width/Depth Ratio Image: Sectional Area (ft ²) Entrenchment Ratio Image: Sectional Area (ft ²) Pool Ength (ft) Image: Sectional Area (ft ²) Profile Image: Sectional Area (ft ²) Pool Ength (ft) Image: Sectional Area (ft ²) Pool Length (ft) Image: Sectional Area (ft ²) Pool Length (ft) Image: Sectional Area (ft ²) Pool Spacing (ft) Image: Sectional Area (ft ²) Pool Spacing (ft) Image: Sectional Area (ft ²) Pool Spacing (ft) Image: Sectional Area (ft ²) Pattern Image: Sectional Area (ft ²) Channel Beltwidth (ft) Image: Sectional Area (ft ²) Reside of Curvature (ft) Image: Sectional Area (ft ²) Meander Wavelength (ft) Image: Sectional Area (ft ²) Meander Wavelength (ft) Image: Sectional Area (ft ²) Max part size (mm) mobilized at bankfull Image: Sectional Area (ftransport capacity) M/m ²		0.73 1.1 7.3 5.4 2 1.26 1.64 0.0002 8.87 1.3 8.5 40	1.12 1.92 12.9 11.21 9.04 1.31 4 38.85 0.021 7 54.34 2.57 5		1.56 2.6 18.8 19.8 29.3 1.99 289.95 0.121 435 4.8			12.2 7.7 2.9 0.9 4.03	13 11.3 6.5 1 14.18		13.4 15.6 8.6 1.2			6.8	0.98 1.4 13.7 14.3 11		0.8103 1.46 11.585 11.629 6.9727	0.9506 1.6371 13.225 14.868 12.435	0.963 1.61 13.057 14.373 8.8446	1.0596 1.98 15.215 20.383	0.0775 0.1729 1.0894 2.6834 5.7683	7 7 7 7 7
¹ Bankfull Max Depth (t) Image: Sectional Area (tf²) Bankfull Cross Sectional Area (tf²) Image: Sectional Area (tf²) Width/Depth Ratio Image: Sectional Area (tf²) Entrenchment Ratio Image: Sectional Area (tf²) Image: Sectional Area (tf²) Image: Sectional Area (tf²) Pool Pool Ray depth (t) Image: Sectional Area (tf²) Image: Sectional Area (tf²) Image: Sectional Area (tf²) Pool Length (t) Image: Sectional Area (tf²) Pool Length (t) Image: Section (tf²) Pool Spacing (t) Image: Section (tf²) Pool Spacing (t) Image: Section (tf²) Pattern Image: Section (tf²) Meander Wavelength (t) Image: Section (tf²) Max part size (tfx) mobilized at bankfull Image: Section (tfx)		1.1 7.3 5.4 2 1.26 1.64 0.0002 8.87 1.3 8.5 40	1.92 12.9 11.21 9.04 1.31 4 38.85 2 0.021 7 54.34 3 5 105		2.6 18.8 19.8 29.3 1.99 289.95 0.121 435 4.8			12.2 7.7 2.9 0.9 4.03	13 11.3 6.5 1 14.18		13.4 15.6 8.6 1.2				1.4 13.7 14.3 11	16	1.46 11.585 11.629 6.9727	1.6371 13.225 14.868 12.435	1.61 13.057 14.373 8.8446	1.98 15.215 20.383	0.1729 1.0894 2.6834 5.7683	7 7 7
Bankfull Cross Sectional Area (ft ²) Image: Sectional Area (ft ²) Width/Depth Ratio Image: Sectional Area (ft ²) Entrenchment Ratio Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft ²) Image: Sectional Area (ft are		7.3 5.4 2 1.26 1.64 0.0002 8.87 1.3 8.5 8.5	12.9 11.21 9.04 1.31 4 38.85 2 0.021 7 54.34 3 2.57 5 105		18.8 19.8 29.3 1.99 289.95 0.121 435 4.8			7.7 2.9 0.9 4.03	11.3 6.5 1 14.18		15.6 8.6 1.2				13.7 14.3 11	16	11.585 11.629 6.9727	13.225 14.868 12.435	13.057 14.373 8.8446	15.215 20.383	1.0894 2.6834 5.7683	7 7
Width/Depth Ratio Image: Constraint of the system of t		5.4 2 1.26 1.64 0.0002 8.87 1.3 8.5 40	11.21 9.04 1.31 4 38.85 2 0.021 7 54.34 2.57 5 105		19.8 29.3 1.99 289.95 0.121 435 4.8			7.7 2.9 0.9 4.03	11.3 6.5 1 14.18		15.6 8.6 1.2				14.3 11	16	11.629 6.9727	14.868 12.435	14.373 8.8446	20.383	2.6834 5.7683	7
Width/Depth Ratio Image: Constraint of the system of t		2 1.26 1.64 0.0002 8.87 1.3 8.5 40	9.04 1.31 4 38.85 2 0.021 7 54.34 3 2.57 5 105		29.3 1.99 289.95 0.121 435 4.8			2.9 0.9 4.03	6.5 1 14.18		8.6 1.2				11	16	6.9727	12.435	8.8446		5.7683	
¹ Bank Height Ratio Image: Second Seco		1.26 1.64 0.0002 8.87 1.3 8.5 40	1.31 4 38.85 2 0.021 7 54.34 3 2.57 5 105		1.99 289.95 0.121 435 4.8			0.9 4.03	1 14.18		1.2					16				22.723 1		-
Profile Riffle Length (ft) Riffle Slope (ft/ft) Image: Comparison of the state		1.64 0.0002 8.87 1.3 8.5 40	4 38.85 2 0.021 7 54.34 3 2.57 5 105		289.95 0.121 435 4.8			4.03	14.18						1		0.9419	0.979	0.9848	1	0.0254	7
Riffle Length (tt) Image: Stream Power (transport parameters) Pack Stream Power (transport capacity) Image: Stream Power (transport capacity) Max part size (mm) mobilized at bankfull Image: Stream Power (transport capacity) Additional Reach Parameters Rosgen Classification Rosgen Classification Image: Stream Power (transport capacity) Bankfull Velocity (fps) Image: Stream Power (transport capacity) Rosgen Classification Image: Stream Power (transport capacity) Bankfull Velocity (fps) Image: Stream Power (transport capacity) Rosgen Classification Image: Stream Power (transport capacity) Bankfull Velocity (fps) Image: Stream Power (transport capacity) Rosgen Classification Image: Stream Power (transport capacity)		0.0002 8.87 1.3 8.5 40	2 0.021 7 54.34 3 2.57 5 105		0.121 435 4.8						23.61		-						_		<u> </u>	7
Riffle Slope (ft/t) Image: Constraint of the second se		0.0002 8.87 1.3 8.5 40	2 0.021 7 54.34 3 2.57 5 105		0.121 435 4.8						23.61		Т	1.0								
Riffle Slope (ft/t) Image: Constraint of the second se		0.0002 8.87 1.3 8.5 40	2 0.021 7 54.34 3 2.57 5 105		0.121 435 4.8									10	16.45	80	9.19	16.294	15.51	34.04	4.4599	64
Pool Length (t) Image: Constraint of the second		8.87 1.3 8.5 40	7 54.34 3 2.57 5 105		435 4.8				0.0202		0.0815			0.0074	0.0158	0.057	0.0008		0.0156	0.0556	0.011	60
Pool Max depth (ft) Image: Constraint of the sector of		1.3 8.5 40	3 2.57 5 105		4.8			18.51	32.11		58.03			14	30.242	53	19.68		28.74	51.91	7.7476	65
Pool Spacing (ft) Image: Channel Beltwidth (ft) Pattern Image: Channel Beltwidth (ft) Radius of Curvature (ft) Image: Channel Beltwidth (ft/tt) Re:Bankfull width (ft/tt) Image: Channel Beltwidth (ft/tt) Meander Wavelength (ft) Image: Channel Beltwidth Ratio Meander Wavelength (ft) Image: Channel Beltwidth Ratio Meander Width Ratio Image: Channel Beltwidth Ratio Transport parameters Image: Channel Beltwidth Ratio Reach Shear Stress (competency) Ib/f ² Image: Channel Beltwidth Ratio Max part size (mm) mobilized at bankfull Image: Channel Beltwidth Ratio Stream Power (transport capacity) W/m ² Image: Channel Beltwidth Ratio Additional Reach Parameters Image: Channel Beltwidth Ratio Rosgen Classification Image: Channel Beltwidth Ratio Bankfull Velocity (fps) Image: Channel Beltwidth Ratio Bankfull Discharge (cfs) Image: Channel Beltwidth Ratio		40	5 105					1.7	2.47		3.1			2.1	2.8	3.9	2.42	2.9651	2.92	3.68	0.2746	65
Pattern Channel Beltwidth (ft) Image: Channel Beltwidth (ft) Radius of Curvature (ft) Image: Channel Beltwidth (ft/ft) Image: Channel Beltwidth (ft/ft) Rc:Bankfull width (ft/ft) Image: Channel Beltwidth (ft/ft) Image: Channel Beltwidth (ft/ft) Meander Wavelength (ft) Image: Channel Beltwidth Ratio Image: Channel Beltwidth Ratio Meander Wavelength (ft) Image: Channel Beltwidth Ratio Image: Channel Beltwidth Ratio Transport parameters Reach Shear Stress (competency) Ib/f ² Image: Channel Beltwidth (ft/ft) Max part size (mm) mobilized at bankfull Image: Channel Beltwidth (ft/ft) Image: Channel Beltwidth (ft/ft) Stream Power (transport capacity) W/m ² Image: Channel Beltwidth (ft/ft) Image: Channel Beltwidth (ft/ft) Additional Reach Parameters Image: Channel Beltwidth (ft/ft) Image: Channel Beltwidth (ft/ft) Bankfull Velocity (ftps) Image: Channel Beltwidth (ft/ft) Image: Channel Beltwidth (ft/ft) Bankfull Discharge (cfs) Image: Channel Beltwidth (ft/ft) Image: Channel Beltwidth (ft/ft)		40	-		752			29	48		84			32	55	97	31.79	46.166	44.57	80.51	9.6963	63
Radius of Curvature (t) Image: Curvature (t) Image: Curvature (t) Rc:Bankfull width (t/t/t) Image: Curvature (t) Image: Curvature (t) Meander Wavelength (t) Image: Curvature (t) Image: Curvature (t) Meander Wavelength (t) Image: Curvature (t) Image: Curvature (t) Meander Wavelength (t) Image: Curvature (t) Image: Curvature (t) Meander Width Ratio Image: Curvature (t) Image: Curvature (t) Transport parameters Image: Curvature (t) Image: Curvature (t) Max part size (mm) mobilized at bankfull Image: Curvature (t) Image: Curvature (t) Stream Power (transport capacity) Image: Curvature (t) Image: Curvature (t) Image: Curvature (t) Additional Reach Parameters Image: Curvature (t) Image: Curvature (t) Image: Curvature (t) Image: Curvature (t) Bankfull Velocity (fps) Image: Curvature (t) Image: Curvature (t) Image: Curvature (t) Image: Curvature (t) Bankfull Discharge (cfs) Image: Curvature (t) Image: Curvature (43 75																			
Rc:Bankfull width (tr/t) Image: Composition of the sector of the sec					51			25	40		65	1		30	46	76	30		46	76		
Meander Wavelength (t) Image: Completency (t) Meander Width Ratio Image: Completency (t) Transport parameters Image: Completency (t) Reach Shear Stress (competency) (t) ^{f2} Image: Completency (t) Max part size (mm) mobilized at bankfull Image: Completency (t) Stream Power (transport capacity) (t) ^{f2} Image: Completency (t) Additional Reach Parameters Image: Completency (t) Rosgen Classification Image: Completency (t) Bankfull Velocity (t) Image: Completency (t) Bankfull Discharge (cfs) Image: Completency (t)		2.4	23		169			20	31		122			23	36	52	23		36	52		
Meander Width Ratio Image: Completency of the second s		0.002	0.0197		0.144			0.016	0.0255		0.037			0.016	0.0255	0.037	0.016		0.0255	0.037		
Transport parameters Reach Shear Stress (competency) lb/f ² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m ² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs)		80	126.5		190			62	85.5		99			72	98	113	72		98	113		
Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs)		7.71	1.87		2.18			2.1	3.3		5.4			2.1	3.3	5.4	2.1		3.3	5.4		
Reach Shear Stress (competency) lb/f² Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs)																						
Max part size (mm) mobilized at bankfull Stream Power (transport capacity) W/m ² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs)																						
Stream Power (transport capacity) W/m² Additional Reach Parameters Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs)				0.4	41										0.28				0.	28		
Additional Reach Parameters Rosgen Classification Image: second sec															38				3	8		
Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs)																						
Bankfull Velocity (fps) Bankfull Discharge (cfs)																						
Bankfull Discharge (cfs)			incised	C4/E4 w	/sections	s of G4		1		E4,	/C4				C4				С	4		
				3.1	19										3.07				3.0)7		
Valley length (ft)				4	2																	
				35	06					54	42											
Channel Thalweg length (ft)				40							50				4100				41	00		
Sinuosity (ft)				1.1	17					1	.2				1.3				1.	3		
Water Surface Slope (Channel) (ft/ft)				0.00	054					0.0	065				0.0048				0.0)48		
BF slope (ft/ft)				0.00	063					0.0	114				0.0048				0.0)48		
³ Bankfull Floodplain Area (acres)																						
⁴ % of Reach with Eroding Banks														_	_	_				_		
Channel Stability or Habitat Metric																						
Biological or Other																						

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Newtown - EEP# 94150 - Underwood Creek: 1273 feet

Parameter		Р	re-Exist	ting Co	onditio	n		Re	ference	Reach	(es) Da	ata	
¹ Ri% / Ru% / P% / G% / S%	38%	6%	48%	8%			28%	4%	60%	8%			
¹ SC% / Sa% / G% / C% / B% / Be%	2.16%	4.95%	81.62%	9.12%	0.43%	1.72%	0.91%	3%	81.59%	14%	0%	0.50%	
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	8.15	19.25	27.75	58.65	105.10		11.59	20.73	29.25	60.76	82.68		
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10													
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0													
Parameter			0	Design					As-bu	ilt/Bas	eline		
Parameter			0	Design					As-bu	ilt/Bas	eline	_	
Parameter ¹ Ri% / Ru% / P% / G% / S%	36%		59%	Design	2%		24%		As-bu 43%	ilt/Bas	eline 2%		
				Design	2%		24%			ilt/Bas			
¹ Ri% / Ru% / P% / G% / S%				Design	2%		24%			ilt/Bas			
¹ Ri% / Ru% / P% / G% / S% ¹ SC% / Sa% / G% / C% / B% / Be%				Design	2%		24%			ilt/Bas			

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions. ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without provide at thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a m

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Newtown - EEP# 94150 - UT to Underwood Creek: 3000 feet

Parameter		Р	re-Exis	ting Co	onditio	n		Ref	erence	e Reach	n(es) D	ata	
¹ Ri% / Ru% / P% / G% / S%	39%	2%	53%	4%			28%	4%	60%	8%			
¹ SC% / Sa% / G% / C% / B% / Be%	0%	2%	92.81%	4.72%	0.47%	0%	0.9%	3%	81.6%	14.0%	0%	0.5%	
¹ d16 / d35 / d50 / d84 / d95 / di ^{sp} (mm)	12.70	19.80	24.50	43.05	60.50		11.59	20.73	29.25	60.76	82.68		
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10													
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0													
Parameter			[Design					As-bı	uilt/Bas	eline		
Parameter			[Design					As-bı	uilt/Bas	eline		
Parameter ¹ Ri% / Ru% / P% / G% / S%	34%		64%	Design	1%		34%		As-b ı 64%	uilt/Bas	eline 1%		
				Design			34%			uilt/Bas			
¹ Ri% / Ru% / P% / G% / S%				Design			34%			uilt/Bas			
¹ Ri% / Ru% / P% / G% / S% ¹ SC% / Sa% / G% / C% / B% / Be%				Design			34%			uilt/Bas			

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions. ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-construction distributions for these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the react. This means that the distributions for these parameters should include data from both the cross-sections and the redore of the readily and the readily provide a leaving of the BHR at rifles beyond those subject to cross-sections and therefore can be readily include at a from both approvide a leaving of the BHR at rifles beyond those subject to cross-sections and therefore can be readily included at from both approvide a leaving the readily included at a from both approvide a leaving the readily included at a from both the cross-sections and therefore can be readily included at a from both approvide a leaving the sections of the sections and the reformed on the cross-sections and the refore can be readily included at a from both the cross-sections and the refore can be readily included at a from both the cross-sections and the refore can be readily included at a from both the cross-sections and the refore can be readily included at a from both the cross-sections and the refore can be readily included at a from both the cross-sections and the refore can be readily included at a from both the cross-s

Table 11a	. Mor	hitoring				•	•••		• •				ters –	Cross	Sectio	ns)					
			1	Newtow	vn - EE	EP# 941	150 - U	nderw	ood Cr	eek: 12	273 fee	t									
				Section 1 w for MY	· · ·						Section 2 -1 in MY							ection 3 -2 in MY			
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	N/A	595.25	595.25	595.25				594.36	594.36	594.36	594.36				592.56	592.56	592.56	592.56			
Bankfull Width (ft)	N/A	17.4132	17.2994	16.20				15.67	16.1383	16.5208	16.75				16.69	19.3302	17.1858	16.83			
Floodprone Width (ft)	N/A	205	205	205				140	140	140	140				225	225	225	225			
Bankfull Mean Depth (ft)	N/A	1.80387	1.90705	2.06				1.03	1.13501	1.11225	1.06				1.08	1.04954	1.08934	1.02			
Bankfull Max Depth (ft)	N/A	3.71	3.84	3.98				1.74	1.83	1.96	1.84				1.75	1.89	1.78	1.9			
Bankfull Cross Sectional Area (ft ²)	N/A	31.4112	32.9907	33.40				16.11	18.3172	18.3753	17.70				18.10	20.2878	18.7211	17.16			
Bankfull Width/Depth Ratio	N/A	9.65324	9.07129	7.86				15.24	14.2187	14.8535	15.85				15.40	18.4178	15.7764	16.5			
Bankfull Entrenchment Ratio	N/A	11.7727	11.8501	12.65				8.94	8.67499	8.47416	8.36				13.48	11.6398	13.0922	13.37			
Bankfull Bank Height Ratio	N/A	1	0.99479	0.93				1.00	1.01093	0.93367	1.02				1.00	0.97884	0.95506	0.97			
Cross Sectional Area between end pins (ft ²)	N/A	82.7397	83.8882	88.73				39.17	40.6695	41.3709	37.31				33.48	36.1303	36.2383	34.73			
d50 (mm)	N/A	N/A	N/A	N/A				Silt	6	3.8	11.2				Silt	8	0.1	8.3			
				Section 4 w for MY	· · ·						Section 5 -3 in MY	· ·									
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+							
Record elevation (datum) used	N/A	591.25	591.25	591.25				590.75	590.75	590.75	590.75										
Bankfull Width (ft)	N/A		21.8311	23.88				15.27		26.4612	16.19										
Floodprone Width (ft)	N/A	180	180	180				110	110	110	110										
Bankfull Mean Depth (ft) Bankfull Max Depth (ft)	N/A N/A	1.48487 3.43	1.53167 3.31	1.41 3.36				1.04	1.15674 2.06	0.74409	1.25 2.53										
Bankfull Max Depth (II) Bankfull Cross Sectional Area (ft ²)	N/A		33.4381	33.57				15.88	2.06	∠.1 19.6896	2.53										
Bankfull Vidth/Depth Ratio	N/A	15.3379		16.99				14.69	13.064	35.5616	12.93										
Bankfull Entrenchment Ratio	N/A	7.90349		7.54				7.20		4.15704	6.79										
Bankfull Bank Height Ratio	N/A	0.97959	1.02115	0.97				1.00		0.98095	0.955				[
Cross Sectional Area between end pins (ft ²)	N/A	65.0698	68.305	68.55				34.16	35.7582	38.1268	37.96				l						
d50 (mm)	N/A	N/A	N/A	N/A				Silt	5	8	6.5										

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

						Та	ble 11	a. Mo	nitori	ng Da	ita - D	imen	siona	l Morp	hology	/ Sum	mary (Dime	nsiona	l Para	neters	- Cross	Sectio	ons)												
										1	Newto	own -	EEP#	¢ 94150) - UT t	o Und	erwoo	d Cre	ek: 30	00 feet																
				Section ' S-1 in MY								ction 2 or MY-0							Section CS-2 in		e)					Section w for M	4 (Pool) Y-01]						Section { i-3 in MY	5 (Riffle) Y-00]		
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY	1 M'	Y2 I	MY3	MY4	MY5	MY+	Base	MY1	MY.	2 MY	3 MY	4 MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	609.86	609.86	609.86	609.78				N/A	607.5	92 607	.92 60	07.92				604.51	604.51	604.	51 604.	51			N/A	603.49	603.49	603.49				601.91	601.91	601.91	601.91			
Bankfull Width (ft)	12.32	12.178	1 12.61	11.99				N/A	18.49	42 34.6	6182 2	4.13				16.52	17.165	7 11.	9 13.6	7			N/A	17.5195	16.64	13.89				13.99	14.2403	14.2956	14.93			
Floodprone Width (ft)	280	280	280	280				N/A	190) 19	90	190				245	245	245	5 245	5			N/A	190	190	190				230	230	230	230			
Bankfull Mean Depth (ft)	1.06	1.08101	1 0.99345	1.04				N/A	1.645	21 0.92	2427	1.3				0.81	0.7682	9 1.094	14 0.8	5			N/A	1.41475	1.49962	1.3				0.97	0.93924	0.94396	0.81			
Bankfull Max Depth (ft)	1.98	2	2.01	1.94				N/A	3.3	B 3.3	32 3	3.45				1.72	1.65	1.9	2 2.1	2			N/A	2.76	2.81	2.98				1.58	1.54	1.66	1.71			
Bankfull Cross Sectional Area (ft ²)	13.06	13.1646	6 12.5275	12.5				N/A	30.42	69 31.9	966 3	1.42				13.38	13.188	3 13.02	03 11.6	4			N/A	24.7857	24.9536	18.13				13.61	13.3751	13.4945	12.05			
Bankfull Width/Depth Ratio	11.63	11.2655	5 12.6931	11.5				N/A	11.24	12 37.4	1546 1	8.53				20.38	22.342	6 10.87	61 16.0	5			N/A	12.3835	11.0962	10.65				14.37	15.1615	15.1442	18.51			
Bankfull Entrenchment Ratio	22.72	22.992	1 22.2046	23.35				N/A	10.27	35 5.48	8844 7	7.87				14.83	14.272	6 20.58	82 17.9	2			N/A	10.845	11.4183	13.68				16.45	16.1513	16.0889	15.4			
Bankfull Bank Height Ratio	0.98	0.955	1.0597	1				N/A	1	0.99	9096 0	0.97			1	0.94	0.96	0.968	75 1				N/A	0.98913	0.98577	0.97				1.00	1.00649	0.98193	0.99			
Cross Sectional Area between end pins (ft ²)	57.18	57.0575	5 59.3436	54.42				N/A	43.24	36 44.0	0703 4	4.07			1	31.77	30.81	30.78	78 36.3	1			N/A	37.4425	37.4902	32.5				24.19	24.079	24.7074	24.62			
d50 (mm)	5.60	1.5	8.6	4.7				N/A	N/A	A N	/A	N/A				Silt	0.10	0.1	0.3				N/A	N/A	N/A	N/A				Silt	0.3	0.1	0.8			
				Section 6								ction 7							s Sectio		e)						9 (Riffle)			Cross	Section			Monitori	ing Reac	h) [CS-
			[CS	6-4 in MY	′-00]						[New f	or MY-0	01]					[CS-5 in	MY-00]					[CS	S-6 in Mነ	′-00]					7	in MY-0	0]		
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY	1 M'	Y2 I	MY3	MY4	MY5	MY+	Base	MY1	MY	2 MY	3 MY	4 MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	598.86	598.86	598.86	598.86	598.86	598.86		N/A	597.	79 597	7.79 59	97.79				596.67	596.67	596.	67 596.	67			594.85	594.85	594.85	594.85				592.00	592	592	592			
Bankfull Width (ft)	13.42	12.3768	8 11.7113	13.38				N/A	17.	5 18.0	0805 1	7.67				12.71	10.964	1 9.973	03 12.4	9			13.62	13.47	13.632	13.53				15.26	17.8611	14.7913	14.31			
Floodprone Width (ft)	115	115	115	115				N/A	180) 18	30	180				110	110	110) 110)			95	95	95	95				135	135	135	135			
Bankfull Mean Depth (ft)	0.96	0.95074	4 0.881	1.04				N/A	1.535	18 1.53	3213 1	1.55				0.91	0.8814	5 0.722	29 0.8	7			0.94	0.90062	0.86565	0.84				1.00	0.85914	0.89803	0.89			
Bankfull Max Depth (ft)	1.50	1.38	1.62	1.7				N/A	3.0	8 3.3	25 3	3.38				1.61	1.44	1.3	2 1.6	7			1.46	1.4	1.58	1.59				1.61	1.72	1.5	1.69			
Bankfull Cross Sectional Area (ft ²)	12.92	11.7671	1 10.3176	13.94				N/A	26.86	57 27.7	017 2	7.39				11.59	9.6643	1 7.20	34 10.9	9			12.80	12.1313	11.8005	11.43				15.22	15.3453	13.283	12.71			
Bankfull Width/Depth Ratio	13.93	13.018	13.2933	12.84				N/A	11.39	93 11.8	8009 1	11.4				13.95	12.438	7 13.80	75 14.3	1			14.50	14.9564	15.7476	16.02				15.31	20.7895	16.4708	16.11			
Bankfull Entrenchment Ratio	8.57	9.29159	9 9.81958	8.6				N/A	10.28	57 9.95	547 1	0.19				8.65	10.032	8 11.02	97 8.8	1			6.97	7.05271	6.96892	7.02				8.84	7.55831	9.127	9.43			
Bankfull Bank Height Ratio	1.00	1.08696	6 1.19753	1.03			1	N/A	0.977	27 0.94	769 1	1.05			1	1.00	1.125	1.257	58 1.0	3			0.95	0.94286	1.03797	1.01	1	1		0.98	0.92442	1.02	0.98	1		
Cross Sectional Area between end pins (ft ²)	43.35	36.1685	5 33.3235	38.48				N/A	43.07	46 44.0	0268 3	9.66				46.57	38.063	1 34.76	65 32.2	8			31.80	30.4305	28.7662	30				25.97	24.7681	25.0001	24.08			
d50 (mm)	Silt	0.1	0.1	0.7				N/A	N/A	A N	/A	N/A				Silt	4.4	1.4	1.8				Silt	2	7.4	4.6				Silt	4.8	0.7	9.7			

1 = Worths and depths for monitoring resurvey will be based on the baseline backful datum regardless of dimensional/depositional development. Input the elvation used as the datum, which should be consistent and based on the baseline datum regardless of dimensional/depositional development. Input the elvation used as the based on the baseline datum regardless of dimensional/depositional development. Input the elvation used as the datum, which should be consistent and based on the baseline datum regardless of dimensional/depositional development. Input the elvation used as the based on the baseline datum regardless of dimensional/depositional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

													Ext							eam Reac od Creek			ry													
Parameter			Base	eline					MY	-1					MY	-2					MY-	3					M	Y- 4					MY	5	_	
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n
Bankfull Width (ft)	15.272	15.878	15.667	16.694	0.7338	3	15.112	16.86	16.138	19.33	2.1999	3	16.521	20.056	17.186	26.461	5.5571	3	16.19	16.59	16.75	16.83	0.35	3												
Floodprone Width (ft)	110	158.33	140	225	59.652	3	110	158.33	140	225	59.652	3	110	158.33	140	225	59.652	3	110	158.3	140	225	59.65	3										- T		
Bankfull Mean Depth (ft)	1.0281	1.0491	1.0349	1.0842	0.0306	3	1.0495	1.1138	1.135	1.1567	0.0567	3	0.7441	0.9819	1.0893	1.1123	0.2063	3	1.02	1.11	1.06	1.25	0.12	3												
¹ Bankfull Max Depth (ft)	1.66	1.7167	1.74	1.75	0.0493	3	1.83	1.9267	1.89	2.06	0.1193	3	1.78	1.9467	1.96	2.1	0.1604	3	1.84	2.09	1.9	2.53	0.39	3												
Bankfull Cross Sectional Area (ft ²)	15.806	16.671	16.108	18.099	1.2459	3	17.48	18.695	18.317	20.288	1.4414	3	18.375	18.929	18.721	19.69	0.6813	3	17.16	18.38	17.7	20.27	1.66	3												
Width/Depth Ratio	14.757	15.131	15.238	15.398	0.3337	3	13.064	15.233	14.219	18.418	2.8175	3	14.853	22.064	15.776	35.562	11.699	3	12.93	15.1	15.85	16.5	1.9	3												
Entrenchment Ratio	7.2026	9.8721	8.9357	13.478	3.2408	3	7.2792	9.198	8.675	11.64	2.2269	3	4.157	8.5745	8.4742	13.092	4.4684	3	6.79	9.51	8.36	13.37	3.43	3												
¹ Bank Height Ratio	1	1	1	1	0	3	0.9788	0.9982	1.0049	1.0109	0.017	3	0.9337	0.9566	0.9551	0.981	0.0237	3	0.950	0.980	0.970	1.020	0.030	3												
Profile																																				
Riffle Length (ft)	7.36	20.808	20.505	31.54	5.5775	22	8.58	21.4	19.56	35.95	6.1111	22	7.34	22.884	22.73	38.3	7.2336	21	8.09	19.46739	18.64	34.57	6.742777	23			1	1						\neg		_
Riffle Slope (ft/ft)	0.0034	0.0132	0.0135	0.0285	0.0054	22	0.0004	0.0112	0.0100	0.0284	0.0068	22	0.0005	0.0095	0.0101	0.0349	0.0075	21	0.00459	0.014253	0.01208	0.03393	0.00754	23	1			1						-		
Pool Length (ft)	17.45	34.809	34.925	52.82	7.6111	24	18.27	34.33	32.865	50.34	7.2143	24	11.35	33.02	33.105	46.16	7.1733	24	23.11	35.23042	34.185	53.41	7.629916	24				1								
Pool Max depth (ft)	2.76	3.4017	3.43	4.04	0.374	24	2.91	3.5154	3.515	3.94	0.2514	24	2.95	5.68	3.72	52.99	10.08	24	2.86	3.604167	3.57	4.21	0.366368	24	1			1						-		
Pool Spacing (ft)	31.47	55.969	54.565	78.46	10.484	22	37.01	57.451	55.8	92.83	13.993	23	33.03	56.567	53.365	92.77	13.478	22	35.5	57.02826	53.96	90.26	13.98921	23				1								
Pattern	-						-				-																									
Channel Beltwidth (ft)	34		53	86		1																			1											
Radius of Curvature (ft)	26		41	59							_													L	1			1								
Rc:Bankfull width (ft/ft)	0.016		0.0255	0.037																								1								
Meander Wavelength (ft)	82		112	130		1						Pattern	data will i	not typica	IIIY DE COII	ected uni	ess visua	base		data or profil	e data indici	ate significa	ant shifts from		1											
Meander Width Ratio	2.1		3.3	5.4															_						1			1								
Additional Reach Parameters																																				
Rosgen Classification			С	4					С	4					C	4					C4															
Channel Thalweg length (ft)			13	31					13	31					133	31					133	1														
Sinuosity (ft)			1.	.3					1.	3					1.	3					1.3															
Water Surface Slope (Channel) (ft/ft)			0.00	048					0.00	485					0.00	418					0.004	48														
BF slope (ft/ft)			0.00	048					0.00	522					0.00	550					0.004	47														
³ Ri% / Ru% / P% / G% / S%	24%		43%		2%		36%		64%		2%		38%		62%				34%		64%		0%													
³ SC% / Sa% / G% / C% / B% / Be%													41%		51%	0%		0%	7%	20%	71%	2%	0%	0%												
³ d16 / d35 / d50 / d84 / d95 /													0.0855	0.3944	3.9537	16.912	30.222		1.12	5.23	8.66	18.13	39.67													
² % of Reach with Eroding Banks			C)					39	6					09	6					0%															
Channel Stability or Habitat Metric																																				
Biological or Other																																				
Shaded cells indicate that these will typically not be 1 = The distributions for these parameters can inclu 2 = Proportion of reach exhibiting banks that are er 3 = Riffle, Run, Pool, Glide, Step; Sitl/Clay, Sand, 4. = Of value/needed only if the n exceeds 3	ude inform oding bas	ed on the	e visual su	urvey from	n visual a	ssessme	ent table		ofile.																											

																				m Reach ood Cre			ary													
Parameter			Base	line*					MY	-1					M	/-2					MY-	3					M	(- 4					MY	- 5		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n
Bankfull Width (ft)	12.322	13.977	13.625	16.516	1.4652	7	10.964	13.399	12.923	17.166	2.1617	6	9.973	12.354	12.255	14.296	1.5334	6	11.99	13.33	13.46	14.93	1.02	6												
Floodprone Width (ft)	95	172.86	135	280	76.095	7	95	179.17	172.5	280	81.328	6	95	179.17	172.5	280	81.328	6	95	179.2	172.5	280	81.33	6												
Bankfull Mean Depth (ft)	0.8103	0.9506	0.963	1.0596	0.0775	7	0.7683	0.9202	0.9199	1.081	0.1021	6	0.7223	0.9167	0.9125	1.0941	0.1263	6	0.81	0.91	0.86	1.04	0.1	6												
¹ Bankfull Max Depth (ft)	1.46	1.6371	1.61	1.98	0.1729	7	1.38		1.49	2	0.2341	6	1.32	1.685	1.64	2.01	0.249	6	1.59	1.79	1.71	2.12	0.2	6												
Bankfull Cross Sectional Area (ft ²)				15.215		7		12.215	12.648		1.4077	6	7.2034		12.164	13.494	2.3335	6	10.9	12.08	11.85	13.94	1.06	6												
Width/Depth Ratio					2.6834	7		14.864		22.343	3.9564	6	10.876	13.594	13.55	15.748	1.7536	6	11.5	14.87	15.16	18.5	2.52	6												
Entrenchment Ratio								13.299			5.81		6.9689			22.205		6	7.02	13.52	12.1	23.35	6.45	6												
¹ Bank Height Ratio	0.9419	0.979	0.9848	1	0.0254	7	0.9429	1.0123	0.982	1.125	0.0767	6	0.9688	1.0839	1.0488	1.2576	0.1178	6	0.99	1.02	1.01	1.08	0.03	6												
Profile																																				
Riffle Length (ft)	9.19	16.294	15.51	34.04	4.4599	64	6.49	15.282	13.945	47.85	6.6304	64	4	17.062	16.56	36.16	4.8838	64	6.84	15.21	15.21	24.78	4.64	64												
Riffle Slope (ft/ft)	0.0008	0.0175	0.0156	0.0556	0.0110	60	0.0017	0.0178	0.0170	0.0586	0.0116	58	0.0014	0.0174	0.0147	0.0673	0.0132	51	0.0017	0.0197	0.0166	0.0607	0.0130	59												
Pool Length (ft)	19.68	30.254	28.74	51.91	7.7476	65	16.33	31.91	29.535	55.66	8.3181	64	18.59	30.179	28.3	58.78	8.9824	64	19.09	13.35	28.89	57.33	8.09	64												
Pool Max depth (ft)	2.42	2.9651	2.92	3.68	0.2746	65	2.6	3.2741	3.1675	12.61	1.2177	64	0.38	2.99	2.94	4.57	0.50	64	1.63	3.05	2.95	12.09	1.28	64												
Pool Spacing (ft)	31.79	46.166	44.57	80.51	9.6963	63	24.26	46.85	45.795	85.42	11.441	62	29.23	47.102	43.685	81.57	11.346	62	26.16	47.11	43.59	131.26	15.35	63												
Pattern																																				
Channel Beltwidth (ft)	30		46	76																																
Radius of Curvature (ft)	23		36	52												Pottorn (doto will r	ot turbior		ected unless	vieual da	to dimons	ional data d	or profile	data in	diaata ai	anifican	t chifte								
Rc:Bankfull width (ft/ft)	0.016		0.0255	0.037												Fallenn		Ut typica	illy be com	ecteu uniess		aseline		or prome	uata int	uicate si	ginnear	11 511115								
Meander Wavelength (ft)	72		98	113																	-	-		-				-								
Meander Width Ratio	2.1		3.3	5.4																																
Additional Reach Parameters																																				
Rosgen Classification			C-	4					С	4					С	4					C4	Ļ														
Channel Thalweg length (ft))		410)0*					30	00					30	00					300	0														
Sinuosity (ft))		1.3	3					1.	3					1.	3					1.3	3														
Water Surface Slope (Channel) (ft/ft)			0.00)48					0.00	529					0.00	492					0.00	45														_
BF slope (ft/ft))		0.00	048					0.00	528					0.00	512					0.00)5														
³ Ri% / Ru% / P% / G% / S%	34%		64%		1%		33%		67%				36%		64%				33%		67%															
³ SC% / Sa% / G% / C% / B% / Be%	5												59%	7%	34%	0%	0%	0%	11%	59%	29%	0%	0%													-
³ d16 / d35 / d50 / d84 / d95 /													0.2974	0.9642	2.9522	7.4625	12.125		0.41	0.81	2.14	8.27	15.35													
² % of Reach with Eroding Banks	6		0)					0	1					0	%					0%	b														
Channel Stability or Habitat Metric																																				
Biological or Other	r																																			
* - The Baseline calculations were performed to	for the en	tire resto	pration le	ngth an	d include	s Cross	Section	10 (CS-	7 in MY-	00) whic	h is not i	n the m	nonitoring	Reach	for UT to	0 Underv	vood Cre	ek																		_

The Baseline calculations were performed for the entire restoration length and includes Cross Section 10 (CS-7 in M Shaded cells indicate that these will typically not be filled in.
 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.
 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table
 3 = Ritfle, Run, Pool, Gilde, Step; SitVClay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
 4. = Of value/needed only if the n exceeds 3

Appendix E. Hydrologic Data

	Table 12. Verifica	tion of Bankfull Events	
	Newtown	- EEP# 94150	
Date of Data Collection	Date of Occurrence	Method	Photo Number
			MY-01
25-Oct-11	N/A	Site Visit observing visible wrack lines	29-30
23-Aug-13	30-June-13	Gauge data	N/A
23-Aug-13	07-July-13	Gauge data	N/A
09-Oct-13	21-Sept-13	Gauge data	N/A

		MY01 - 2011			IY02 - 2012	
Gauge Number	Maximum Number of Consecutive Days	Percent of Growing Season	Success Criteria Attained	Maximum Number of Consecutive Days	Percent of Growing Season	Success Criteria Attained
1	59 ^a	26	Yes	79 ^f	35	Yes
2	197 ^b	86	Yes	223 ^f	98	Yes
3	197 ^b	86	Yes	223 ^f	98	Yes
4	77 [°]	34	Yes	75 ^g	33	Yes
5	92 ^b	40	Yes	105 ^h	46	Yes
6	111 ^b	49	Yes	223 ^f	98	Yes
7	27 ^d	12	Yes	64 ^f	28	Yes
8	7 ^e	3	No	5 ^f	2	No
		<u>MY03 – 2013</u>		Ν	<u>IY04 - 2014</u>	
1	168 ⁱ	74	Yes			
2	209 ⁱ	92	Yes			
3	209 ⁱ	92	Yes			
4	209 ⁱ	92	Yes			
5	179 ⁱ	79	Yes			
6	209 ⁱ	92	Yes			
7	209 ⁱ	92	Yes			
8	22 ^j	9	Yes			

Table 13. Wetland Criteria Attainment 2010-2013

a – Gauge installed April 23, 2011 –197 days of growing season monitored

b - Gauge installed April 22, 2011 –198 days of growing season monitored

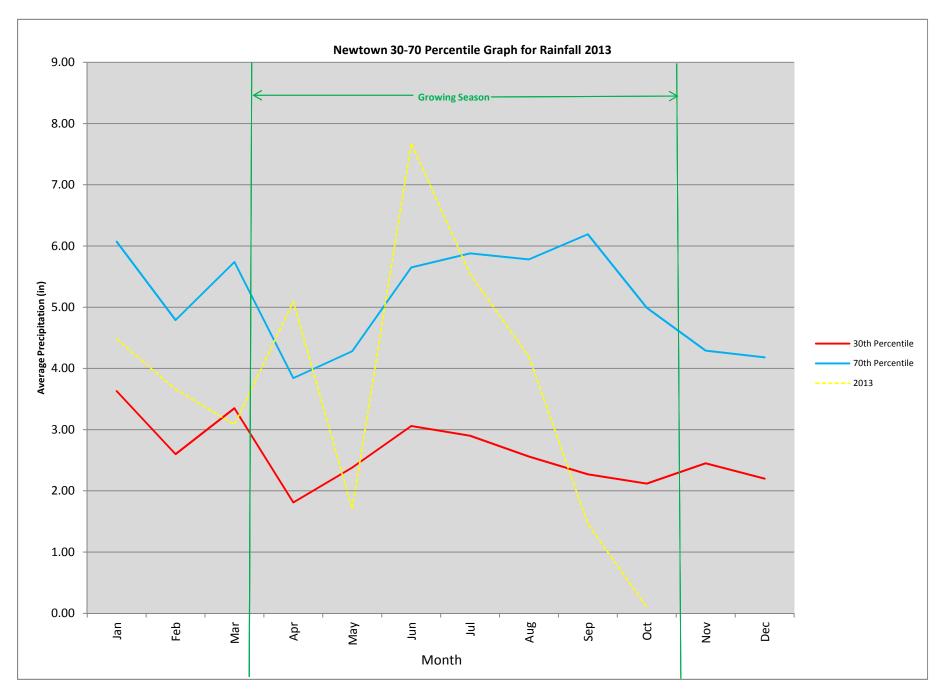
c – Gauge installed February 20, 2010; Data missing due to gauge failure - 217 days of growing season monitored

d - Gauge installed May 24, 2011 - 166 days of growing season monitored

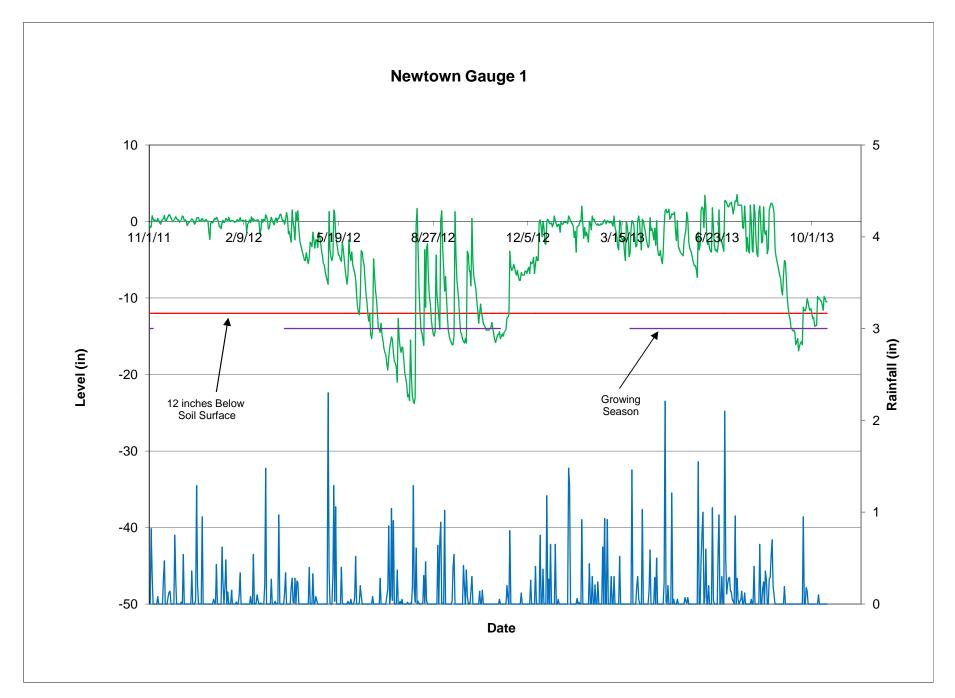
e - Gauge installed August 13, 2011 -85 days of growing season monitored

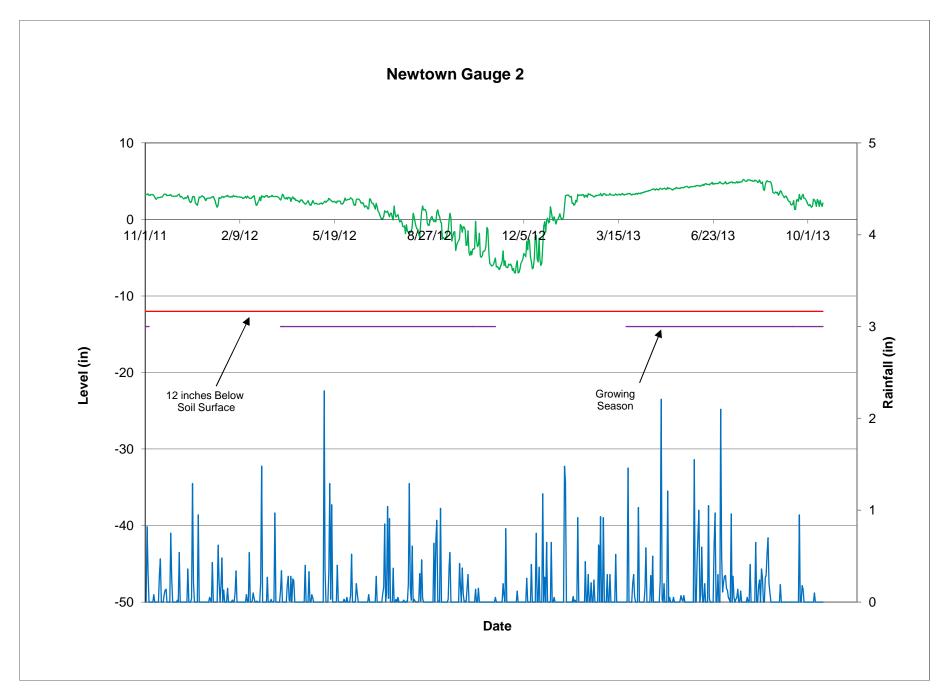
f - Report produced prior to end of growing season -223 days of 2012 growing season monitored

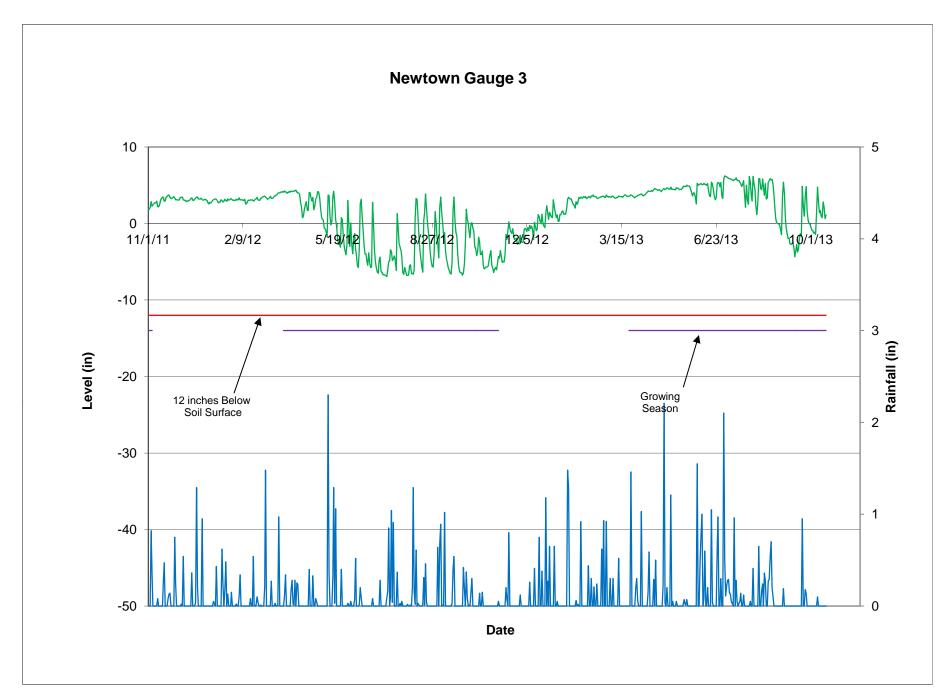
g - Data missing due to gauge failure; 219 days of growing season monitored

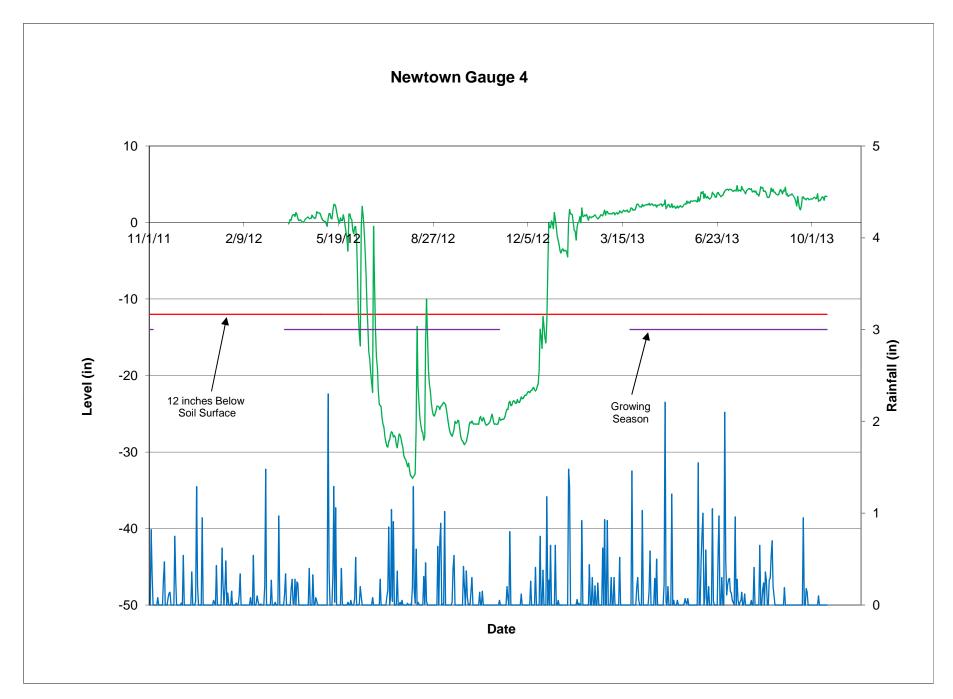

h - Data missing due to gauge failure; 181 days of growing season monitored

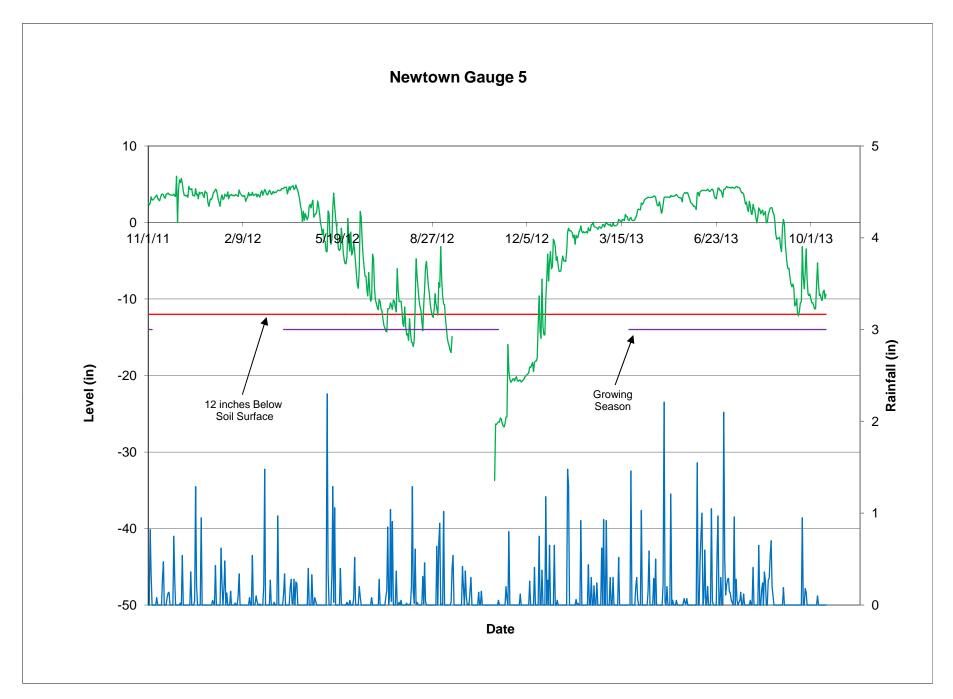
i - Report produced proper to end of growing season - 209 days of 2013 growing season monitored


j - Data missing due to gauge failure; 130 days of growing season monitored


Growing Season: March 23 to November 6 (source: http://www.wcc.nrcs.usda.gov/cgibin/state.pl?state=nc)


Groundwater levels should be within 12 inches of the surface for at least 6.3% of the growing season to meet wetland hydrology success criteria. Union County has a growing season of 221 days (March 23-October 6). Therefore groundwater levels must be within 12 inches of the soil surface for a minimum of 14 consecutive days within the growing season to meet wetland hydrology success criteria. All of the wetland groundwater gauges exhibit hydroperiod criterion that exceeds the minimum 6.3% as described in the Baseline Monitoring Document and As-Built Baseline Report.




2013 Rain Data: Station KCLT (http://www.nc-climate.ncsu.edu/services/request.php)

